©2012 Silicon Storage Technology, Inc. DS25023B 06/13
4
1 Mbit / 2 Mbit / 4 Mbit Multi-Purpose Flash
SST39LF010 / SST39LF020 / SST39LF040
SST39VF010 / SST39VF020 / SST39VF040
Data Sheet
Pin Assignments
Figure 2: Pin Assignments for 32-lead PLCC
5
6
7
8
9
10
11
12
13
29
28
27
26
25
24
23
22
21
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
A14
A13
A8
A9
A11
OE#
A10
CE#
DQ7
A14
A13
A8
A9
A11
OE#
A10
CE#
DQ7
A14
A13
A8
A9
A11
OE#
A10
CE#
DQ7
4 3 2 1 32 31 30
A12
A15
A16
NC
V
DD
WE#
NC
A12
A15
A16
NC
V
DD
WE#
A17
A12
A15
A16
A18
V
DD
WE#
A17
32-lead PLCC
Top View
1150 32-plcc NH P4.4
14 15 16 17 18 19 20
DQ1
DQ2
V
SS
DQ3
DQ4
DQ5
DQ6
DQ1
DQ2
V
SS
DQ3
DQ4
DQ5
DQ6
DQ1
DQ2
V
SS
DQ3
DQ4
DQ5
DQ6
SST39LF/VF010SST39LF/VF020SST39LF/VF040 SST39LF/VF010 SST39LF/VF020 SST39LF/VF040
SST39LF/VF010SST39LF/VF020SST39LF/VF040 SST39LF/VF010 SST39LF/VF020 SST39LF/VF040
©2012 Silicon Storage Technology, Inc. DS25023B 06/13
5
1 Mbit / 2 Mbit / 4 Mbit Multi-Purpose Flash
SST39LF010 / SST39LF020 / SST39LF040
SST39VF010 / SST39VF020 / SST39VF040
Data Sheet
Figure 3: Pin Assignments for 32-lead TSOP (8mm x 14mm)
Table 1: Pin Description
Symbol Pin Name Functions
A
MS
1
-A
0
1. A
MS
= Most significant address
A
MS
= A
16
for SST39LF/VF010, A
17
for SST39LF/VF020, and A
18
for SST39LF/VF040
Address Inputs To provide memory addresses. During Sector-Erase A
MS
-A
12
address lines will
select the sector. During Block-Erase A
MS
-A
16
address lines will select the block.
DQ
7
-DQ
0
Data Input/output To output data during Read cycles and receive input data during Write cycles.
Data is internally latched during a Write cycle.
The outputs are in tri-state when OE# or CE# is high.
CE# Chip Enable To activate the device when CE# is low.
OE# Output Enable To gate the data output buffers.
WE# Write Enable To control the Write operations.
V
DD
Power Supply To provide power supply voltage: 3.0-3.6V for SST39LF010/020/040
2.7-3.6V for SST39VF010/020/040
V
SS
Ground
NC No Connection Unconnected pins.
T1.1 25023
A11
A9
A8
A13
A14
NC
WE#
V
DD
NC
A16
A15
A12
A7
A6
A5
A4
A11
A9
A8
A13
A14
A17
WE#
V
DD
NC
A16
A15
A12
A7
A6
A5
A4
A11
A9
A8
A13
A14
A17
WE#
V
DD
A18
A16
A15
A12
A7
A6
A5
A4
SST39LF/VF010SST39LF/VF020SST39LF/VF040 SST39LF/VF010 SST39LF/VF020 SST39LF/VF040
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
OE#
A10
CE#
DQ7
DQ6
DQ5
DQ4
DQ3
V
SS
DQ2
DQ1
DQ0
A0
A1
A2
A3
OE#
A10
CE#
DQ7
DQ6
DQ5
DQ4
DQ3
V
SS
DQ2
DQ1
DQ0
A0
A1
A2
A3
OE#
A10
CE#
DQ7
DQ6
DQ5
DQ4
DQ3
V
SS
DQ2
DQ1
DQ0
A0
A1
A2
A3
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
1150 32-tsop WH P1.1
Standard Pinout
Top View
Die Up
©2012 Silicon Storage Technology, Inc. DS25023B 06/13
6
1 Mbit / 2 Mbit / 4 Mbit Multi-Purpose Flash
SST39LF010 / SST39LF020 / SST39LF040
SST39VF010 / SST39VF020 / SST39VF040
Data Sheet
Device Operation
Commands are used to initiate the memory operation functions of the device. Commands are written
to the device using standard microprocessor write sequences. A command is written by asserting WE#
low while keeping CE# low. The address bus is latched on the falling edge of WE# or CE#, whichever
occurs last. The data bus is latched on the rising edge of WE# or CE#, whichever occurs first.
Read
The Read operation of the SST39LF010/020/040 and SST39VF010/020/040 devices are controlled by
CE# and OE#, both have to be low for the system to obtain data from the outputs. CE# is used for
device selection. When CE# is high, the chip is deselected and only standby power is consumed. OE#
is the output control and is used to gate data from the output pins. The data bus is in high impedance
state when either CE# or OE# is high. Refer to the Read cycle timing diagram for further details (Figure
4).
Byte-Program Operation
The SST39LF010/020/040 and SST39VF010/020/040 are programmed on a byte-by-byte basis.
Before programming, the sector where the byte exists must be fully erased. The Program operation is
accomplished in three steps. The first step is the three-byte load sequence for Software Data Protec-
tion. The second step is to load byte address and byte data. During the Byte-Program operation, the
addresses are latched on the falling edge of either CE# or WE#, whichever occurs last. The data is
latched on the rising edge of either CE# or WE#, whichever occurs first. The third step is the internal
Program operation which is initiated after the rising edge of the fourth WE# or CE#, whichever occurs
first. The Program operation, once initiated, will be completed, within 20 µs. See Figures 5 and 6 for
WE# and CE# controlled Program operation timing diagrams and Figure 15 for flowcharts. During the
Program operation, the only valid reads are Data# Polling and Toggle Bit. During the internal Program
operation, the host is free to perform additional tasks. Any commands written during the internal Pro-
gram operation will be ignored.
Sector-Erase Operation
The Sector-Erase operation allows the system to erase the device on a sector-by-sector basis. The
sector architecture is based on uniform sector size of 4 KByte. The Sector-Erase operation is initiated
by executing a six-byte command sequence with Sector-Erase command (30H) and sector address
(SA) in the last bus cycle. The sector address is latched on the falling edge of the sixth WE# pulse,
while the command (30H) is latched on the rising edge of the sixth WE# pulse. The internal Erase
operation begins after the sixth WE# pulse. The End-of-Erase can be determined using either Data#
Polling or Toggle Bit methods. See Figure 9 for timing waveforms. Any commands written during the
Sector-Erase operation will be ignored.
Chip-Erase Operation
The SST39LF010/020/040 and SST39VF010/020/040 devices provide a Chip-Erase operation, which
allows the user to erase the entire memory array to the ‘1’s state. This is useful when the entire device
must be quickly erased.
The Chip-Erase operation is initiated by executing a six- byte Software Data Protection command
sequence with Chip-Erase command (10H) with address 5555H in the last byte sequence. The internal
Erase operation begins with the rising edge of the sixth WE# or CE#, whichever occurs first. During the

SST39VF010-70-4I-WHE

Mfr. #:
Manufacturer:
Microchip Technology
Description:
NOR Flash 128K X 8 70ns
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union