AD7730/AD7730L
–22–
CALIBRATION OPERATION SUMMARY
The AD7730 contains a number of calibration options as outlined previously. Table XVII summarizes the calibration types, the
operations involved and the duration of the operations. There are two methods of determining the end of calibration. The first is to
monitor the hardware RDY pin using either interrupt-driven or polling routines. The second method is to do a software poll of the
RDY bit in the Status Register. This can be achieved by setting up the part for continuous reads of the Status Register once a calibra-
tion has been initiated. The RDY pin and RDY bit go high on initiating a calibration and return low at the end of the calibration
routine. At this time, the MD2, MD1, MD0 bits of the Mode Register have returned to 0, 0, 0. The FAST and SKIP bits are treated
as 0 for the calibration sequence so the full filter is always used for the calibration routines. See Calibration section for full detail.
Table XVII. Calibration Operations
MD2, MD1, Duration to RDY Duration to RDY
Calibration Type MD0 Low (CHP = 1) Low (CHP = 0) Calibration Sequence
Internal Zero-Scale 1, 0, 0 22 × 1/Output Rate 24 × 1/Output Rate Calibration on internal shorted input with PGA set for
selected input range. The ac bit is ignored for this calibra-
tion sequence. The sequence is performed with dc excitation.
The Offset Calibration Register for the selected channel is
updated at the end of this calibration sequence. For full self-
calibration, this calibration should be preceded by an Internal
Full-Scale calibration. For applications which require an
Internal Zero-Scale and System Full-Scale calibration, this
Internal Zero-Scale calibration should be performed first.
Internal Full-Scale 1, 0, 1 44 × 1/Output Rate 48 × 1/Output Rate Calibration on internally-generated input full-scale with
PGA set for selected input range. The ac bit is ignored for
this calibration sequence. The sequence is performed with
dc excitation. The Gain Calibration Register for the
selected channel is updated at the end of this calibration
sequence. It is recommended that internal full-scale
calibrations are performed on the 80 mV range, regardless
of the subsequent operating range, to optimize the post-
calibration gain error. This calibration should be followed
by either an Internal Zero-Scale or System Zero-Scale
calibration. This zero-scale calibration should be
performed at the operating input range.
System Zero-Scale 1, 1, 0 22 × 1/Output Rate 24 × 1/Output Rate Calibration on externally applied input voltage with PGA
set for selected input range. The input applied is assumed
to be the zero scale of the system. If ac = 1, the system
continues to use ac excitation for the duration of the
calibration. For full system calibration, this System Zero-
Scale calibration should be performed first. For applications
which require a System Zero-Scale and Internal Full-Scale
calibration, this calibration should be preceded by the
Internal Full-Scale calibration. The Offset Calibration
Register for the selected channel is updated at the end of
this calibration sequence.
System Full-Scale 1, 1, 1 22 × 1/Output Rate 24 × 1/Output Rate Calibration on externally-applied input voltage with PGA
set for selected input range. The input applied is assumed
to be the full-scale of the system. If ac = 1, the system
continues to use ac excitation for the duration of the
calibration. This calibration should be preceded by a
System Zero-Scale or Internal Zero-Scale calibration. The
Gain Calibration Register for the selected channel is
updated at the end of this calibration sequence.
REV. B
AD7730/AD7730L
–23–
CIRCUIT DESCRIPTION
The AD7730 is a sigma-delta A/D converter with on-chip digital
filtering, intended for the measurement of wide dynamic range,
low-frequency signals such as those in weigh-scale, strain-gage,
pressure transducer or temperature measurement applications.
It contains a sigma-delta (or charge-balancing) ADC, a calibra-
tion microcontroller with on-chip static RAM, a clock oscillator,
a digital filter and a bidirectional serial communications port.
The part consumes 13 mA of power supply current with a standby
mode which consumes only 25 μA. The part operates from a single
+5 V supply. The clock source for the part can be provided via an
external clock or by connecting a crystal oscillator or ceramic
resonator across the MCLK IN and MCLK OUT pins.
The part contains two programmable-gain fully differential analog
input channels. The part handles a total of eight different input
ranges which are programmed via the on-chip registers. There are
four differential unipolar ranges: 0 mV to +10 mV, 0 mV to
+20 mV, 0 mV to +40 mV and 0 mV to +80 mV and four differen-
tial bipolar ranges: ±10 mV, ± 20 mV, ± 40 mV and ±80 mV.
The AD7730 employs a sigma-delta conversion technique to
realize up to 24 bits of no missing codes performance. The
sigma-delta modulator converts the sampled input signal into a
digital pulse train whose duty cycle contains the digital informa-
tion. A digital low-pass filter processes the output of the sigma-
delta modulator and updates the data register at a rate that can
be programmed over the serial interface. The output data from
the part is accessed over this serial interface. The cutoff frequency
and output rate of this filter can be programmed via on-chip
registers. The output noise performance and peak-to-peak reso-
lution of the part varies with gain and with the output rate as
shown in Tables I to IV.
The analog inputs are buffered on-chip allowing the part to
handle significant source impedances on the analog input. This
means that external R, C filtering (for noise rejection or RFI
reduction) can be placed on the analog inputs if required. Both
analog channels are differential, with a common-mode voltage
range that comes within 1.2 V of AGND and 0.95 V of AV
DD
.
The reference input is also differential and the common-mode
range here is from AGND to AV
DD
.
The part contains a 6-bit DAC that is controlled via on-chip
registers. This DAC can be used to remove TARE values of up
to ± 80 mV from the analog input signal range. The resolution
on this TARE function is 1.25 mV for a +2.5 V reference and
2.5 mV with a +5 V reference.
The AD7730 can accept input signals from a dc-excited bridge.
It can also handle input signals from an ac-excited bridge by
using the ac excitation clock signals (ACX and ACX) to switch
the supplies to the bridge. ACX and ACX are nonoverlapping
clock signals used to synchronize the external ac supplies that
drive the transducer bridge. These ACX clocks are demodulated
on the AD7730 input.
The AD7730 contains a number of hardware and software
events that set or reset status flags and bits in registers. Table
XVIII summarizes which blocks and flags are affected by the
different events.
Table XVIII. Reset Events
Set Registers Mode Filter Analog Reset Serial Set RDY Set STDY
Event to Default Bits Reset Power-Down Interface Pin/Bit Bit
Power-On Reset Yes 000 Yes Yes Yes Yes Yes
RESET Pin Yes 000 Yes No Yes Yes Yes
STANDBY Pin No As Is Yes Yes No Yes Yes
Mode 011 Write No 011 Yes Yes No Yes Yes
SYNC Pin No As Is Yes No No Yes Yes
Mode 000 Write No 000 Yes No No Yes Yes
Conversion or No New Initial No No Yes Yes
Cal Mode Write Value Reset
Clock 32 1s Yes 000 Yes No Yes Yes Yes
Data Register Read No As Is No No No Yes No
REV. B
AD7730/AD7730L
–24–
ANALOG INPUT
Analog Input Channels
The AD7730 contains two differential analog input channels, a
primary input channel, AIN1, and a secondary input channel,
AIN2. The input pairs provide programmable gain, differential
channels which can handle either unipolar or bipolar input
signals. It should be noted that the bipolar input signals are
referenced to the respective AIN(–) input of the input pair. The
secondary input channel can also be reconfigured as two digital
output port bits.
A two-channel differential multiplexer switches one of the two
input channels to the on-chip buffer amplifier. This multiplexer
is controlled by the CH0 and CH1 bits of the Mode Register.
When the analog input channel is switched, the RDY output
goes high and the settling time of the part must elapse before a
valid word from the new channel is available in the Data Regis-
ter (indicated by RDY going low).
Buffered Inputs
The output of the multiplexer feeds into a high impedance input
stage of the buffer amplifier. As a result, the analog inputs can
handle significant source impedances. This buffer amplifier has
an input bias current of 50 nA (CHP = 1) and 60 nA (CHP = 0).
This current flows in each leg of the analog input pair. The
offset current on the part is the difference between the input
bias on the legs of the input pair. This offset current is less than
10 nA (CHP = 1) and 30 nA (CHP = 0). Large source resis-
tances result in a dc offset voltage developed across the source
resistance on each leg, but matched impedances on the analog
input legs will reduce the offset voltage to that generated by the
input offset current.
Analog Input Ranges
The absolute input voltage range is restricted to between
AGND + 1.2 V to AV
DD
– 0.95 V, which also places restrictions
on the common-mode range. Care must be taken in setting up
the common-mode voltage and input voltage range so these
limits are not exceeded, otherwise there will be a degradation in
linearity performance.
In some applications, the analog input range may be biased
either around system ground or slightly below system ground. In
such cases, the AGND of the AD7730 must be biased negative
with respect to system ground so the analog input voltage does
not go within 1.2 V of AGND. Care should taken to ensure that
the differential between either AV
DD
or DV
DD
and this biased
AGND does not exceed 5.5 V. This is discussed in more detail
in the Applications section.
Programmable Gain Amplifier
The output from the buffer amplifier is summed with the output
of the 6-bit Offset DAC before it is applied to the input of the
on-chip programmable gain amplifier (PGA). The PGA can
handle four different unipolar input ranges and four bipolar
ranges. With the HIREF bit of the Mode Register at 0 and a
+2.5 V reference (or the HIREF bit at 1 and a +5 V reference),
the unipolar ranges are 0 mV to +10 mV, 0 mV to +20 mV,
0 mV to +40 mV, and 0 mV to +80 mV, while the bipolar ranges
are ± 10 mV, ± 20 mV, ± 40 mV and ± 80 mV. These are the
nominal ranges that should appear at the input to the on-chip
PGA.
Offset DAC
The purpose of the Offset DAC is to either add or subtract an
offset so the input range at the input to the PGA is as close as
possible to the nominal. If the output of the 6-bit Offset DAC is
0 V, the differential voltage ranges that appear at the analog
input to the part will also appear at the input to the PGA. If,
however, the Offset DAC has an output voltage other than 0 V,
the input range to the analog inputs will differ from that applied
to the input of the PGA.
The Offset DAC has five magnitude bits and one sign bit. The
sign bit determines whether the value loaded to the five magni-
tude bits is added to or subtracted from the voltage at the ana-
log input pins. Control of the Offset DAC is via the DAC
Register which is discussed previously in the On-Chip Registers
section. With a 5 V reference applied between the REF IN pins,
the resolution of the Offset DAC is 2.5 mV with a range that
allows addition or subtraction of 77.5 mV. With a 2.5 V refer-
ence applied between the REF IN pins, the resolution of the
Offset DAC is 1.25 mV with a range that allows addition or
subtraction of 38.75 mV.
Following is an example of how the Offset DAC works. If the
differential input voltage range the user had at the analog input
pins was +20 mV to +30 mV, the Offset DAC should be pro-
grammed to subtract 20 mV of offset so the input range to the
PGA is 0 mV to +10 mV. If the differential input voltage range
the user had at the analog input pins was –60 mV to +20 mV,
the Offset DAC should be programmed to add 20 mV of offset so
the input range to the PGA is ± 40 mV.
Bipolar/Unipolar Inputs
The analog inputs on the AD7730 can accept either unipolar or
bipolar input voltage ranges. Bipolar input ranges do not imply
that the part can handle negative voltages with respect to system
ground on its analog inputs unless the AGND of the part is also
biased below system ground. Unipolar and bipolar signals on
the AIN(+) input are referenced to the voltage on the respective
AIN(–) input. For example, if AIN(–) is +2.5 V and the AD7730 is
configured for an analog input range of 0 to +10 mV with no
DAC offset correction, the input voltage range on the AIN(+)
input is +2.5 V to +2.51 V. Similarly, if AIN(–) is +2.5 V and the
AD7730 is configured for an analog input range of ±80 mV
with no DAC offset correction, the analog input range on the
AIN(+) input is +2.42 V to +2.58 V (i.e., 2.5 V ± 80 mV).
Bipolar or unipolar options are chosen by programming the B/U
bit of the Mode Register. This programs the selected channel
for either unipolar or bipolar operation. Programming the chan-
nel for either unipolar or bipolar operation does not change any
of the input signal conditioning; it simply changes the data
output coding and the points on the transfer function where
calibrations occur. When the AD7730 is configured for unipolar
operation, the output coding is natural (straight) binary with a
zero differential voltage resulting in a code of 000 . . . 000, a
midscale voltage resulting in a code of 100 . . . 000 and a full-
scale input voltage resulting in a code of 111 . . . 111. When the
AD7730 is configured for bipolar operation, the coding is offset
binary with a negative full scale voltage resulting in a code of
000 . . . 000, a zero differential voltage resulting in a code of
100 . . . 000 and a positive full scale voltage resulting in a code
of 111 . . . 111.
REV. B

AD7730BRUZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC CMOS 24-Bit Bridge Transducer
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union