NCP13992
www.onsemi.com
13
Figure 8. Internal Connection of the NCP13992 Current Mode Control Scheme
The basic principle of current mode control scheme
implementation lies in the use of an ON−time comparator
that defines upper switch on−time by comparing voltage
ramp, derived from the current sense input voltage, to the
divided feedback pin voltage. The upper switch on−time is
then re−used for low side switch conduction period. The
switching frequency is thus defined by the actual primary
current and output load conditions. Digital processing with
10 ns minimum on−time resolution is implemented to
ensure high noise immunity. The ON−time comparator
output is blanked by the leading edge blanking (t
LEB
) after
the Mupper switch is turned−on. The ON−time comparator
LEB period helps to avoid false triggering of the on−time
modulation due to noise generated by the HB pin voltage
transition.
The voltage signal for current sense input is prepared
externally via natural primary current integration by the
resonant tank capacitor Cs. The resonant capacitor voltage
is divided down by capacitive divider (Ccs1, Ccs2, Rcs1,
Rcs2) before it is provided to the CS input. The capacitive
divider division ratio, which is fully externally adjustable,
defines the maximum primary current level that is reached
in case of maximum feedback voltage – i.e. the capacitive
divider division ration defines the maximum output power
of the converter for given bulk voltage. The CS is a bipolar
input pin which an input voltage swing is restricted to ±5V.
A fixed voltage offset is internally added to the CS pin signal
in order to assure enough voltage margin for operation the
feedback optocoupler − the FB optocoupler saturation
voltage is ~ 0.15 V (depending on type). However, the CS
pin useful signal for frequency modulation swings from 0 V,
so current mode regulation would not work under light load
conditions if no offset would be added to the CS pin before
it is stabilized to the level of the on−time comparator input.
The CS pin signal is also used for secondary side short circuit
detection – please refer to chapter dedicated to short circuit
protection.
The second input signal for the on−time comparator is
derived from the FB pin voltage. This internal FB pin signal
is also used for the following purposes: skip mode operation
detection, PFC MODE control and overload / open FB pin
fault detection. The detailed description of these functions
can be found in each dedicated chapters. The internal
pull−up resistor assures that the FB pin voltage increases
when the optocoupler LED becomes less biased – i.e. when
output load is increased. The higher FB pin voltage implies
a higher reference level for on−time comparator i.e. longer
Mupper switch on−time and thus also higher output power.
The FB pin features a precise voltage clamp which limits the
internal FB signal during overload and startup. The FB pin
signal passes through the FB processing block before it is
brought to the ON−time comparator input. The FB
processing block scales the FB signal down by a K
FB
ratio
in order to limit the CS input dynamic voltage range. The
scaled FB signal is then further processed by subtraction of
a ramp compensation generator signal in order to ensure
stability of the current mode control scheme. The divided
internal FB signal is overridden by a Soft−start generator
output voltage during device starts−up.
The actual operating frequency of the converter is defined
based on the CS pin and FB pin input signals. The maximum
output power of the converter, under given input voltage, is
limited by maximum internal FB voltage clamp that is
reached when optocoupler provides no current. The
maximum output power limit is bulk voltage dependent due
to changing ratio between magnetizing and load primary
current components. Line Feed Forward (LFF) system is
implemented in the controller to compensate for maximum
output power clamp variation. The I
LFF
current that flows
out from the Cs pin is BO/PFC FB pin voltage proportional
NCP13992
www.onsemi.com
14
and creates voltage offset on the resistor connected to the Cs
pin. The higher input voltage, the higher drop is created on
external resistor. The Mupper switch on−time is thus
reduced for given maximum internal FB voltage clamp
when input voltage increases. The I
LFF
current is provided
only when BO pin voltage exceeds BO_OK threshold
voltage.
Please refer to Figure 9 and below description for better
understanding of the NCP13992 frequency modulation
system.
Figure 9. NCP13992 On−time Modulation Principle
The Mupper switch is activated by the controller after
dead−time (DT) period lapses in point A. The frequency
processing block increments the ON−time counter with
10 ns resolution until the internal CS signal crosses the
internal FB set point for the ON−time comparator in point B.
A DT period is then introduced by the controller to avoid any
shoot−through current through the power stage switches.
The DT period ends in point C and the controller activates
the Mlower switch. The ON−time processing block
decrements the ON_time counter down until it reaches zero.
The Mlower switch is then turned−OFF at point D and the
DT period is started. This approach results in perfect duty
cycle symmetry for Mlower and Mupper switches. The
Mupper switch on−time naturally increases and the
operating frequency drops when the FB pin voltage is
increased, i.e. when higher current is delivered by the
converter output – sequence E.
The resonant capacitor voltage and thus also CS pin
voltage can be out of balance in some cases – this is the case
during transition from full load to no−load operation when
skip mode is not used or adjusted correctly. The current
mode operation is not possible in such case because the
ON−time comparator output stays active for several
switching cycles. Thus a special logic has been implemented
in NCP13992 in order to repeat the last valid on−time until
the current mode operation recovers – i.e. until the CS pin
signal balance is restored by the system.
Overload and Open FB Protections
The overload protection and open FB pin detection are
implemented via FB pin voltage monitoring in this
controller. The FB fault comparator is triggered once the FB
pin voltage reaches its maximum level and the V
FB_FAULT
threshold is exceeded. The fault timer or counter (depending
on IC option) is then enabled – refer to Figure 10. The time
period to the FB fault event confirmation is defined by the
preselected t
FB_FAULT_TIMER
parameter when the fault
timer option is used. The FB fault counter, once selected as
a FB fault confirmation period source, defines the fault
confirmation period via Mupper DRV pulses counting. The
FB fault confirmation time is thus dependent on switching
frequency. The fault timer/counter is reset once the FB fault
condition diminishes. A digital noise filter has been added
after the FB fault comparator to overcome false triggering of
the FB fault timer/counter due to possible noise on the FB
input. The noise filter has a period of 2 ms for FB fault
timer/counter activation and 20 µs for reset/deactivation to
assure high noise immunity. A cumulative timer/counter IC
option is also available on request. The FB fault
timer/counter is not reset when the FB fault condition
diminishes in this case. The FB fault timer/counter is
disabled and memorizes the fault period information. The
cumulative FB fault timer/counter integrates all the FB fault
events over the IC operation time. The Fault timer/counter
can be reset via skip mode or VCC UVLO event.
NCP13992
www.onsemi.com
15
Figure 10. Internal FB Fault Management
The controller disables driver pulses and enters protection
mode once the FB fault event is confirmed by the FB fault
timer or counter. Latched or auto−recovery operation is then
triggered – depends on selected IC option. The controller
adds an auto−recovery off−time period (t
A−REC_TIMER
) and
restarts the operation via soft start in case of auto−recovery
option. The application temperature runaway is thus
avoided in case of overload while the automatic restart is still
possible once the overload condition disappears. The IC
with latched FB fault option stays latched−off, supplied by
the HV startup current source working in DSS mode, until
the V
CC_RESET
threshold is reached on the VCC pin – i.e.
until user re−connects power supply mains.
Please refer to Figure 23 and Figure 24 for an illustration
of the NCP13992 FB fault detection block.
Secondary Short Circuit Detection
The protection system described previously, implemented
via FB pin voltage level detection, prevents continuous
overload operation and/or open FB pin conditions. The
primary current is naturally limited by the NCP13992
on−time modulation principle in this case. But the primary
current increases when the output terminals are shorted. The
NCP13992 controller will maintain zero voltage switching
operation in such case, however high currents will flow
through the power MOSFETS, transformer winding and
secondary side rectification. The NCP13992 implements a
dedicated secondary side short circuit protection system that
will shut down the controller much faster than the regular FB
fault event in order to limit the stress of the power stage
components. The CS pin signal is monitored by the
dedicated CS fault comparator − refer to Figure 8. The CS
fault counter is incremented each time the CS fault
comparator is triggered. The controller enters
auto−recovery or latched protection mode (depending on IC
option) in case the CS fault counter overflows refer to
Figure 11. The CS fault counter is then reset once the CS
fault comparator is inactive for at least 50 Mupper upcoming
pulses. This digital filtering improves CS fault protection
system noise immunity.
Figure 11. NCP13992 CS Fault Principle

NCP13992AADR2G

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
AC/DC Converters HIGH PERF CURRENT
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet