Philips Semiconductors Product specification
P83C557E4/P80C557E4/P89C557E4Single-chip 8-bit microcontroller
1999 Mar 02
13
F8H
F0H
E8H
E0H
D8H
D0H
B8H
C0H
A8H
B0H
A0H
98H
90H
80H
IP1
B
IEN1
ACC
PSW
P4
IP0
P3
IEN0
P2
S0CON
P0
P1
TCON
TM2IR
REGISTER
MNEMONIC
BIT ADDRESS (HEX)
DIRECT BYTE
ADDRESS (HEX)
C8H
88H
S1CON
F8F9FB FAFCFDFF FE
F0F1F3 F2F4F5F7 F6
ECT0ECT1ECT3 ECT2ECM0ECM1ET2 ECM2
E8E9EB EAECEDEF EE
E0E1E3 E2E4E5E7 E6
CR0CR1SI AASTOSTACR2 ENS1
D8D9DB DADCDDDF DE
PF1RS0 OVRS1F0CY AC
D0D1D3 D2D4D5D7 D6
CTI0CTI1CTI3 CTI2CMI0CMI1T2OV CMI2
C8C9CB CACCCDCF CE
C0C1C3 C2C4C5C7 C6
PX0PT0PT1 PX1PS0PS1–PAD
B8B9BB BABCBDBF BE
B0B1B3 B2B4B5B7 B6
EX0ET0ET1 EX1ES0ES1EA EAD
A8A9AB AAACADAF AE
A0A1A3 A2A4A5A7 A6
RITITB8 RB8RENSM2
SM0
SM1
98999B 9A9C9D9F 9E
909193 92949597 96
IT0IE0IE1 IT1TR0TF0TF1 TR1
88898B 8A8C8D8F 8E
808183 82848587 86
Figure 8. Special Function Register bit addresses
(MSB) (LSB)FFH
PT2 PCM2 PCM1 PCM0 PCT3 PCT2 PCT1 PCT0
Philips Semiconductors Product specification
P83C557E4/P80C557E4/P89C557E4Single-chip 8-bit microcontroller
1999 Mar 02
14
6.4 I/O Facilities
The P8xC557E4 has six 8-bit ports. Ports 0 to 3 are the same as in
the 80C51, with the exception of the additional functions of Port 1.
The parallel I/O function of Port 4 is equal to that of Ports 1, 2 and 3.
Port 5 has a parallel input port function, but has no function as an
output port.
The SDA and SCL lines serve the serial port SIO1 (I
2
C). Because
the I
2
C-bus may be active while the device is disconnected from
V
DD,
these pins, are provided with open drain drivers.
Ports 0, 1, 2, 3, 4 and 5 perform the following alternative functions:
Port 0 : provides the multiplexed low-order address and data
bus used for expanding the P8xC557E4 with standard
memories and peripherals.
Port 1 : Port 1 is used for a number of special functions:
4 capture inputs (or external interrupt request inputs if
capture information is not utilized)
external counter input
external counter reset input
Port 2 : provides the high-order address bus when the
P8xC557E4 is expanded with external Program
Memory and/or external Data Memory.
Port 3 : pins can be configured individually to provide:
external interrupt request inputs
counter inputs
receiver input and transmitter output of seri port
SIO 0 (UART)
control signals to read and write external Data
Memory
Port 4 : can be configured to provide signals indicating a match
between timer counter T2 and its compare registers.
Port 5 : may be used in conjunction with the ADC interface.
Unused analog inputs can be used as digital inputs. As
Port 5 lines may be used as inputs to the ADC, these
digital inputs have an inherent hysteresis to prevent the
input logic from drawing too much current from the
power lines when driven by analog signals. Channel to
channel crosstalk should be taken into consideration
when both digital and analog signals are simultaneously
input to Port 5 (see DC characteristics).
All ports are bidirectional with the exception of Port 5 which is an
input port.
Pins of which the alternative function is not used may be used as
normal bidirectional I/Os.
The generation or use of a Port 1, Port 3 or Port 4 pin as an
alternative function is carried out automatically by the P8xC557E4
provided the associated Special Function Register bit is set HIGH.
The pull-up arrangements of Ports 1 – 4 are shown in Figure 9.
Figure 9. I/O buffers in the P8xC557E4 (Ports 1, 2, 3 and 4)
V
DD
QN
2 System Clock Periods
Port
Pin
n
From Port
Latch
V
DD
V
DD
P1 P2 P3
Input Data
Read Port Pin
P1 is turned on for 2 system clock periods after QN makes a 1-to-0 transition.
During this time, P1 also turns on P3 through the inverter to form an additional pull up.
Philips Semiconductors Product specification
P83C557E4/P80C557E4/P89C557E4Single-chip 8-bit microcontroller
1999 Mar 02
15
6.5 Pulse Width Modulated Outputs
The P8xC557E4 contains two pulse width modulated output
channels (see Figure 13). These channels generate pulses of
programmable length and interval. The repetition frequency is
defined by an 8-bit prescaler PWMP, which supplies the clock for the
counter. The prescaler and counter are common to both PWM
channels. The 8-bit counter counts module 255, i.e., from 0 to 254
inclusive. The value of the 8-bit counter is compared to the contents
of two registers: PWM0 and PWM1. Provided the contents of either
of these registers is greater than the counter value, the
corresponding PWM0
or PWM1 output is set LOW. If the contents of
these registers are equal to, or less than the counter value, the
output will be HIGH. The pulse-width-ratio is therefore defined by the
contents of the registers PWM0 and PWM1. The pulse-width-ratio is
in the range of 0/255 to 255/255 and may be programmed in
increments of 1/255.
Buffered PWM outputs may be used to drive DC motors. The
rotation speed of the motor would be proportional to the contents of
PWMn. The PWM outputs may also be configured as a dual DAC. In
this application, the PWM outputs must be integrated using
conventional operational amplifier circuitry. If the resulting output
voltages have to be accurate, external buffers with their own analog
supply should be used to buffer the PWM outputs before they are
integrated. The repetition frequency fpwm, at the PWMn outputs is
give by:
fpwm
f
CLK
2 (1 PWMP) 255
This gives a repetition frequency range of 123 Hz to 31.4 kHz (f
CLK
= 16 MHz). By loading the PWM registers with either 00H or FFH,
the PWM channels will output a constant HIGH or LOW level,
respectively. Since the 8-bit counter counts modulo 255, it can never
actually reach the value of the PWM registers when they are loaded
with FFH.
When a compare register (PWM0 or PWM1) is loaded with a new
value, the associated output is updated immediately. It does not
have to wait until the end of the current counter period. Both PWMn
output pins are driven by push-pull drivers. These pins are not used
for any other purpose.
PWMP (FEH) PWMP.7 PWMP.6 PWMP.5 PWMP.4 PWMP.3 PWMP.2 PWMP.1 PWMP.0
Figure 10. Prescaler frequency control register PWMP.
76543210
Table 6. Description of PWMP Bits
BIT FUNCTION
PWMP.0 to 7 Prescaler division factor = (PWMP) + 1
NOTE:
1. Reading PWMP gives the current reload value. The actual count of the prescaler cannot be read.
PWM0 (FCH) PWM0.7 PWM0.6 PWM0.5 PWM0.4 PWM0.3 PWM0.2 PWM0.1 PWM0.0
Figure 11. Pulse width register PWM0.
76543210
Table 7. Description of PWM0 bits
BIT FUNCTION
PWM0.0 to 7
LOW/HIGH ration of PWM0 signal =
(PWM0)
255 – (PWM0)

P80C557E4EFB/01,55

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
IC MCU 8BIT ROMLESS 80QFP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet