22
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72T3645/55/65/75/85/95/105/115/125 2.5V TeraSync
36-BIT FIFO
1K x 36, 2K x 36, 4K x 36, 8K x 36, 16K x 36, 32K x 36, 64K x 36, 128K x 36 and 256K x 36
FEBRUARY 4, 2009
When a 36 bit output bus width is used:
For the IDT72T3645/72T3655/72T3665/72T3675/72T3685/72T3695/
72T36105/72T36115/72T36125, 2 enabled read cycles are required to read
the offset registers, (1 per offset). Data on the outputs Qn are read from the Empty
Offset Register on the first LOW-to-HIGH transition of RCLK. Upon the second
LOW-to-HIGH transition of RCLK, data are read from the Full Offset Register.
The third transition of RCLK reads, once again, from the Empty Offset Register.
When an 18 bit output bus width is used:
For the IDT72T3645/72T3655/72T3665/72T3675/72T3685/72T3695/
72T36105, 2 enabled read cycles are required to read the offset registers, (1
per offset). Data on the outputs Qn are read from the Empty Offset Register on
the first LOW-to-HIGH transition of RCLK. Upon the second LOW-to-HIGH
transition of RCLK, data are read from the Full Offset Register. The third transition
of RCLK reads, once again, from the Empty Offset Register.
For the IDT72T36115/72T36125, 4 enabled read cycles are required to
read the offset registers, (2 per offset). Data on the outputs Qn are read from
the Empty Offset Register LSB on the first LOW-to-HIGH transition of RCLK.
Upon the 2
nd
LOW-to-HIGH transition of RCLK data on the outputs Qn are read
from the Empty Offset Register MSB. Upon the 3
rd
LOW-to-HIGH transition of
RCLK data on the outputs Qn are read from the Full Offset Register LSB. Upon
the 4
th
LOW-to-HIGH transition of RCLK data on the outputs Qn are read from
the Full Offset Register MSB. The 5
th
LOW-to-HIGH transition of RCLK data on
the outputs Qn are once again read from the Empty Offset Register LSB.
When a 9 bit output bus width is used:
For the IDT72T36115/72T36125, 4 enabled read cycles are required to
read the offset registers, (2 per offset). Data on the outputs Qn are read from
the Empty Offset Register LSB on the first LOW-to-HIGH transition of RCLK.
Upon the 2
nd
LOW-to-HIGH transition of RCLK data on the outputs Qn are read
from the Empty Offset Register MSB. Upon the 3
rd
LOW-to-HIGH transition of
RCLK data on the outputs Qn are read from the Full Offset Register LSB. Upon
the 4
th
LOW-to-HIGH transition of RCLK data on the outputs Qn are read from
the Full Offset Register MSB. The 5
th
LOW-to-HIGH transition of RCLK data on
the outputs Qn are once again read from the Empty Offset Register LSB.
For the IDT72T36115/72T36125, 6 enabled read cycles are required to
read the offset registers, (3 per offset). Data on the outputs Qn are read from
the Empty Offset Register LSB on the first LOW-to-HIGH transition of RCLK.
Upon the 3
rd
LOW-to-HIGH transition of RCLK data on the outputs Qn are read
from the Empty Offset Register MSB. Upon the 4
th
LOW-to-HIGH transition of
RCLK data on the outputs Qn are read from the Full Offset Register LSB. Upon
the 6
th
LOW-to-HIGH transition of RCLK data on the outputs Qn are read from
the Full Offset Register MSB. The 7
th
LOW-to-HIGH transition of RCLK data on
the outputs Qn are once again read from the Empty Offset Register LSB. See
Figure 3, Programmable Flag Offset Programming Sequence. See Figure
22, Parallel Read of Programmable Flag Registers, for the timing diagram for
this mode.
It is permissible to interrupt the offset register read sequence with reads or
writes to the FIFO. The interruption is accomplished by deasserting REN, LD,
or both together. When REN and LD are restored to a LOW level, reading of
the offset registers continues where it left off. It should be noted, and care should
be taken from the fact that when a parallel read of the flag offsets is performed,
the data word that was present on the output lines Qn will be overwritten.
Parallel reading of the offset registers is always permitted regardless of
which timing mode (IDT Standard or FWFT modes) has been selected.
RETRANSMIT FROM MARK OPERATION
The Retransmit from Mark feature allows FIFO data to be read repeatedly
starting at a user-selected position. The FIFO is first put into retransmit mode that
will ‘mark’ a beginning word and also set a pointer that will prevent ongoing FIFO
write operations from over-writing retransmit data. The retransmit data can be
read repeatedly any number of times from the ‘marked’ position. The FIFO can
be taken out of retransmit mode at any time to allow normal device operation.
The ‘mark’ position can be selected any number of times, each selection over-
writing the previous mark location. Retransmit operation is available in both IDT
standard and FWFT modes.
During IDT standard mode the FIFO is put into retransmit mode by a Low-
to-High transition on RCLK when the ‘MARK’ input is HIGH and EF is HIGH.
The rising RCLK edge ‘marks’ the data present in the FIFO output register as
the first retransmit data. The FIFO remains in retransmit mode until a rising edge
on RCLK occurs while MARK is LOW.
Once a ‘marked’ location has been set (and the device is still in retransmit
mode, MARK is HIGH), a retransmit can be initiated by a rising edge on RCLK
while the retransmit input (RT) is LOW. REN must be HIGH (reads disabled)
before bringing RT LOW. The device indicates the start of retransmit setup by
setting EF LOW, also preventing reads. When EF goes HIGH, retransmit setup
is complete and read operations may begin starting with the first data at the MARK
location. Since IDT standard mode is selected, every word read including the
first ‘marked’ word following a retransmit setup requires a LOW on REN (read
enabled).
Note, write operations may continue as normal during all retransmit
functions, however write operations to the ‘marked’ location will be prevented.
See Figure 18, Retransmit from Mark (IDT standard mode), for the relevant
timing diagram.
During FWFT mode the FIFO is put into retransmit mode by a rising RCLK
edge when the ‘MARK’ input is HIGH and OR is LOW. The rising RCLK edge
‘marks’ the data present in the FIFO output register as the first retransmit data.
The FIFO remains in retransmit mode until a rising RCLK edge occurs while
MARK is LOW.
Once a marked location has been set (and the device is still in retransmit
mode, MARK is HIGH), a retransmit can be initiated by a rising RCLK edge while
the retransmit input (RT) is LOW. REN must be HIGH (reads disabled) before
bringing RT LOW. The device indicates the start of retransmit setup by setting
OR HIGH.
When OR goes LOW, retransmit setup is complete and on the next rising
RCLK edge after retransmit setup is complete, (RT goes HIGH), the contents
of the first retransmit location are loaded onto the output register. Since FWFT
mode is selected, the first word appears on the outputs regardless of REN, a
LOW on REN is not required for the first word. Reading all subsequent words
requires a LOW on REN to enable the rising RCLK edge. See Figure 19,
Retransmit from Mark timing (FWFT mode), for the relevant timing diagram.
Note, there must be a minimum of 32 bytes of data between the write pointer
and read pointer when the MARK is asserted. (32 bytes = 16 word = 8 long
words). Also, once the MARK is set, the write pointer will not increment past the
“marked” location until the MARK is deasserted. This prevents “overwriting”
of retransmit data.
HSTL/LVTTL I/O
Both the write port and read port are user selectable between HSTL or
LVTTL I/O, via two select pins, WHSTL and RHSTL respectively. All other
control pins are selectable via SHSTL, see Table 5 for details of groupings.
Note, that when the write port is selected for HSTL mode, the user can reduce
the power consumption (in stand-by mode by utilizing the WCS input).
All “Static Pins” must be tied to VCC or GND. These pins are LVTTL only,
and are purely device configuration pins.
23
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72T3645/55/65/75/85/95/105/115/125 2.5V TeraSync
36-BIT FIFO
1K x 36, 2K x 36, 4K x 36, 8K x 36, 16K x 36, 32K x 36, 64K x 36, 128K x 36 and 256K x 36
FEBRUARY 4, 2009
WHSTL SELECT RHSTL SELECT SHSTL SELECT STATIC PINS
WHSTL: HIGH = HSTL RHSTL: HIGH = HSTL SHSTL: HIGH = HSTL LVTTL ONLY
LOW = LVTTL LOW = LVTTL LOW = LVTTL
Dn (I/P) RCLK/RD (I/P) EF/OR (O/P) SCLK (I/P) PRS (I/P) IW (I/P) OW (I/P)
WCLK/WR (I/P) RCS (I/P) PAF (O/P) LD (I/P) TRST (I/P) BM (I/P) ASYW (I/P)
WEN (I/P) MARK (I/P) EREN (O/P) MRS (I/P) TDI (I/P) ASYR (I/P) BE (I/P)
WCS (I/P) REN (I/P) PAE (O/P) TCK (I/P) IP (I/P) FSEL0 (I/P)
OE (I/P) FF/IR (O/P) TMS (I/P) FSEL1 (I/P) PFM (I/P)
RT (I/P) HF (O/P) SEN (I/P) SHSTL (I/P) WHSTL (I/P)
Qn (O/P) ERCLK (O/P) FWFT/SI (I/P) RHSTL (I/P)
TDO (O/P)
TABLE 5 — I/O CONFIGURATION
24
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72T3645/55/65/75/85/95/105/115/125 2.5V TeraSync
36-BIT FIFO
1K x 36, 2K x 36, 4K x 36, 8K x 36, 16K x 36, 32K x 36, 64K x 36, 128K x 36 and 256K x 36
FEBRUARY 4, 2009
SIGNAL DESCRIPTION
INPUTS:
DATA IN (D0 - Dn)
Data inputs for 36-bit wide data (D0 - D35), data inputs for 18-bit wide data
(D0 - D17) or data inputs for 9-bit wide data (D0 - D8).
CONTROLS:
MASTER RESET ( MRS )
A Master Reset is accomplished whenever the MRS input is taken to a LOW
state. This operation sets the internal read and write pointers to the first location
of the RAM array. PAE will go LOW, PAF will go HIGH, and HF will go HIGH.
If FWFT/SI is LOW during Master Reset then the IDT Standard mode,
along with EF and FF are selected. EF will go LOW and FF will go HIGH. If
FWFT/SI is HIGH, then the First Word Fall Through mode (FWFT), along with
IR and OR, are selected. OR will go HIGH and IR will go LOW.
All control settings such as OW, IW, BM, BE, RM, PFM and IP are defined
during the Master Reset cycle.
During a Master Reset, the output register is initialized to all zeroes. A Master
Reset is required after power up, before a write operation can take place. MRS
is asynchronous.
See Figure 9, Master Reset Timing, for the relevant timing diagram.
PARTIAL RESET (PRS)
A Partial Reset is accomplished whenever the PRS input is taken to a LOW
state. As in the case of the Master Reset, the internal read and write pointers
are set to the first location of the RAM array, PAE goes LOW, PAF goes HIGH,
and HF goes HIGH.
Whichever mode is active at the time of Partial Reset, IDT Standard mode
or First Word Fall Through, that mode will remain selected. If the IDT Standard
mode is active, then FF will go HIGH and EF will go LOW. If the First Word
Fall Through mode is active, then OR will go HIGH, and IR will go LOW.
Following Partial Reset, all values held in the offset registers remain
unchanged. The programming method (parallel or serial) currently active at
the time of Partial Reset is also retained. The output register is initialized to all
zeroes. PRS is asynchronous.
A Partial Reset is useful for resetting the device during the course of
operation, when reprogramming programmable flag offset settings may not be
convenient.
See Figure 10, Partial Reset Timing, for the relevant timing diagram.
ASYNCHRONOUS WRITE (ASYW)
The write port can be configured for either Synchronous or Asynchronous
mode of operation. If during Master Reset the ASYW input is LOW, then
Asynchronous operation of the write port will be selected. During Asynchro-
nous operation of the write port the WCLK input becomes WR input, this is the
Asynchronous write strobe input. A rising edge on WR will write data present
on the Dn inputs into the FIFO. (WEN must be tied LOW when using the write
port in Asynchronous mode).
When the write port is configured for Asynchronous operation the full flag
(FF) operates in an asynchronous manner, that is, the full flag will be updated
based in both a write operation and read operation. Note, if Asynchronous
mode is selected, FWFT is not permissable. Refer to Figures 30, 31, 34 and
35 for relevant timing and operational waveforms.
ASYNCHRONOUS READ (ASYR)
The read port can be configured for either Synchronous or Asynchronous
mode of operation. If during a Master Reset the ASYR input is LOW, then
Asynchronous operation of the read port will be selected. During Asynchro-
nous operation of the read port the RCLK input becomes RD input, this is the
Asynchronous read strobe input. A rising edge on RD will read data from the
FIFO via the output register and Qn port. (REN must be tied LOW during
Asynchronous operation of the read port).
The OE input provides three-state control of the Qn output bus, in an
asynchronous manner. (RCS, provides three-state control of the read port in
Synchronous mode).
When the read port is configured for Asynchronous operation the device
must be operating on IDT standard mode, FWFT mode is not permissible if the
read port is Asynchronous. The Empty Flag (EF) operates in an Asynchronous
manner, that is, the empty flag will be updated based on both a read operation
and a write operation. Refer to figures 32, 33, 34 and 35 for relevant timing and
operational waveforms.
RETRANSMIT (RT)
The Retransmit (RT) input is used in conjunction with the MARK input,
together they provide a means by which data previously read out of the FIFO
can be reread any number of times. If retransmit operation has been selected
(i.e. the MARK input is HIGH), a rising edge on RCLK while RT is LOW will reset
the read pointer back to the memory location set by the user via the MARK input.
If IDT standard mode has been selected the EF flag will go LOW and remain
LOW for the time that RT is held LOW. RT can be held LOW for any number
of RCLK cycles, the read pointer being reset to the marked location. The next
rising edge of RCLK after RT has returned HIGH, will cause EF to go HIGH,
allowing read operations to be performed on the FIFO. The next read operation
will access data from the ‘marked’ memory location.
Subsequent retransmit operations may be performed, each time the read
pointer returning to the ‘marked’ location. See Figure 18, Retransmit from Mark
(IDT Standard mode) for the relevant timing diagram.
If FWFT mode has been selected the OR flag will go HIGH and remain HIGH
for the time that RT is held LOW. RT can be held LOW for any number of RCLK
cycles, the read pointer being reset to the ‘marked’ location. The next RCLK
rising edge after RT has returned HIGH, will cause OR to go LOW and due to
FWFT operation, the contents of the marked memory location will be loaded onto
the output register, a read operation being required for all subsequent data
reads.
Subsequent retransmit operations may be performed each time the read
pointer returning to the ‘marked’ location. See Figure 19, Retransmit from Mark
(FWFT mode) for the relevant timing diagram.
MARK
The MARK input is used to select Retransmit mode of operation. An RCLK
rising edge while MARK is HIGH will mark the memory location of the data
currently present on the output register, the device will also be placed into
retransmit mode. Note, for the IDT72T3645/72T3655/72T3665/72T3675/
72T3685/72T3695 there must be a minimum of 32 bytes of data between the
write pointer and read pointer when the MARK is asserted. For the IDT72T36105/
72T36115 there must be a minimum of 128 bytes, for the IDT72T36125 a
minimum of 256 bytes. Remember, 4 (x9) bytes = 2 (x18) words = 1 (x36) word.
Also, once the MARK is set, the write pointer will not increment past the “marked”
location until the MARK is deasserted. This prevents “overwriting” of retransmit
data.
The MARK input must remain HIGH during the whole period of retransmit
mode, a falling edge of RCLK while MARK is LOW will take the device out of
retransmit mode and into normal mode. Any number of MARK locations can be
set during FIFO operation, only the last marked location taking effect. Once a
mark location has been set the write pointer cannot be incremented past this

72T3695L5BB

Mfr. #:
Manufacturer:
IDT
Description:
FIFO 2.5V 32K X 36 FIFO
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union