31
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72T3645/55/65/75/85/95/105/115/125 2.5V TeraSync
36-BIT FIFO
1K x 36, 2K x 36, 4K x 36, 8K x 36, 16K x 36, 32K x 36, 64K x 36, 128K x 36 and 256K x 36
FEBRUARY 4, 2009
Figure 6. Standard JTAG Timing
SYSTEM INTERFACE PARAMETERS
Parameter Symbol Test
Conditions
Min. Max. Units
JTAG Clock Input Period tTCK - 100 - ns
JTAG Clock HIGH tTCKHIGH -40-ns
JTAG Clock Low tTCKLOW -40-ns
JTAG Clock Rise Time tTCKRISE --5
(1)
ns
JTAG Clock Fall Time tTCKFALL --5
(1)
ns
JTAG Reset tRST -50-ns
JTAG Reset Recovery tRSR -50-ns
JTAG
AC ELECTRICAL CHARACTERISTICS
(vcc = 2.5V ± 5%; Tcase = 0°C to +85°C)
IDT72T3645
IDT72T3655
IDT72T3665
IDT72T3675
IDT72T3685
IDT72T3695
IDT72T36105
IDT72T36115
IDT72T36125
Parameter Symbol Test Conditions Min. Max. Units
Data Output tDO
(1)
-20ns
Data Output Hold tDOH
(1)
0-ns
Data Input tDS trise=3ns 10 - ns
tDH tfall=3ns 10 -
NOTE:
1. 50pf loading on external output signals.
JTAG TIMING SPECIFICATION
NOTE:
1. Guaranteed by design.
t4
t3
TDO
TDO
TDI/
TMS
TCK
TRST
t
DO
Notes to diagram:
t1 =
tTCKLOW
t2 =
tTCKHIGH
t3 =
tTCKFALL
t4 = tTCKRISE
t5 =
tRST
(reset pulse width)
t6 = tRSR (reset recovery)
5907 drw11
t5
t6
t1
t2
t
TCK
t
DH
t
DS
32
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72T3645/55/65/75/85/95/105/115/125 2.5V TeraSync
36-BIT FIFO
1K x 36, 2K x 36, 4K x 36, 8K x 36, 16K x 36, 32K x 36, 64K x 36, 128K x 36 and 256K x 36
FEBRUARY 4, 2009
JTAG INTERFACE
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to
support the JTAG boundary scan interface. The IDT72T3645/72T3655/
72T3665/72T3675/72T3685/72T3695/72T36105/72T36115/72T36125 in-
corporates the necessary tap controller and modified pad cells to implement the
JTAG facility.
Note that IDT provides appropriate Boundary Scan Description Language
program files for these devices.
The Standard JTAG interface consists of four basic elements:
Test Access Port (TAP)
TAP controller
Instruction Register (IR)
Data Register Port (DR)
The following sections provide a brief description of each element. For a
complete description refer to the IEEE Standard Test Access Port Specification
(IEEE Std. 1149.1-1990).
The Figure below shows the standard Boundary-Scan Architecture
Figure 7. Boundary Scan Architecture
TEST ACCESS PORT (TAP)
The Tap interface is a general-purpose port that provides access to the
internal of the processor. It consists of four input ports (TCLK, TMS, TDI, TRST)
and one output port (TDO).
THE TAP CONTROLLER
The Tap controller is a synchronous finite state machine that responds to
TMS and TCLK signals to generate clock and control signals to the Instruction
and Data Registers for capture and update of data.
T
A
P
TAP
Cont-
roller
Mux
DeviceID Reg.
Boundary Scan Reg.
Bypass Reg.
clkDR, ShiftDR
UpdateDR
TDO
TDI
TMS
TCLK
TRST
clklR, ShiftlR
UpdatelR
Instruction Register
Instruction Decode
Control Signals
5907 drw12
33
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72T3645/55/65/75/85/95/105/115/125 2.5V TeraSync
36-BIT FIFO
1K x 36, 2K x 36, 4K x 36, 8K x 36, 16K x 36, 32K x 36, 64K x 36, 128K x 36 and 256K x 36
FEBRUARY 4, 2009
Figure 8. TAP Controller State Diagram
Test-Logic
Reset
Run-Test/
Idle
1
0
0
Select-
DR-Scan
Select-
IR-Scan
1
1
1
Capture-IR
0
Capture-DR
0
0
EXit1-DR
1
Pause-DR
0
Exit2-DR
1
Update-DR
1
Exit1-IR
1
Exit2-IR
1
Update-IR
1
1
0
1
1
1
5907 drw13
0
Shift-DR
0
0
0
Shift-IR
0
0
Pause-IR
0
1
Input = TMS
0
01
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.
1149.1) for the full state diagram
All state transitions within the TAP controller occur at the rising edge of the
TCLK pulse. The TMS signal level (0 or 1) determines the state progression
that occurs on each TCLK rising edge. The TAP controller takes precedence
over the FIFO memory and must be reset after power up of the device. See
TRST description for more details on TAP controller reset.
Test-Logic-Reset All test logic is disabled in this controller state enabling the
normal operation of the IC. The TAP controller state machine is designed in such
a way that, no matter what the initial state of the controller is, the Test-Logic-Reset
state can be entered by holding TMS at high and pulsing TCK five times. This
is the reason why the Test Reset (TRST) pin is optional.
Run-Test-Idle In this controller state, the test logic in the IC is active only if
certain instructions are present. For example, if an instruction activates the self
test, then it will be executed when the controller enters this state. The test logic
in the IC is idles otherwise.
Select-DR-Scan This is a controller state where the decision to enter the
Data Path or the Select-IR-Scan state is made.
Select-IR-Scan This is a controller state where the decision to enter the
Instruction Path is made. The Controller can return to the Test-Logic-Reset state
other wise.
Capture-IR In this controller state, the shift register bank in the Instruction
Register parallel loads a pattern of fixed values on the rising edge of TCK. The
last two significant bits are always required to be “01”.
Shift-IR In this controller state, the instruction register gets connected
between TDI and TDO, and the captured pattern gets shifted on each rising edge
of TCK. The instruction available on the TDI pin is also shifted in to the instruction
register.
Exit1-IR This is a controller state where a decision to enter either the Pause-
IR state or Update-IR state is made.
Pause-IR This state is provided in order to allow the shifting of instruction
register to be temporarily halted.
Exit2-DR This is a controller state where a decision to enter either the Shift-
IR state or Update-IR state is made.
Update-IR In this controller state, the instruction in the instruction register is
latched in to the latch bank of the Instruction Register on every falling edge of
TCK. This instruction also becomes the current instruction once it is latched.
Capture-DR In this controller state, the data is parallel loaded in to the data
registers selected by the current instruction on the rising edge of TCK.
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These
controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and
Update-IR states in the Instruction path.
NOTES:
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).
3. TAP controller must be reset before normal FIFO operations can begin.

72T3695L5BB

Mfr. #:
Manufacturer:
IDT
Description:
FIFO 2.5V 32K X 36 FIFO
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union