ADAU1328 Data Sheet
Rev. B | Page 12 of 32
0.5
–0.5
–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
0.3
0.4
0 648 16 32
MAGNITUDE (dB)
FREQUENCY (kHz)
06102-008
Figure 9. DAC Pass-Band Filter Response, 192 kHz
–10
–8
–6
–4
–2
0
48
9664
80
MAGNITUDE (dB)
FREQUENCY (kHz)
06102-009
Figure 10. DAC Stop-Band Filter Response, 192 kHz
Data Sheet ADAU1328
Rev. B | Page 13 of 32
THEORY OF OPERATION
ANALOG-TO-DIGITAL CONVERTERS (ADCs)
There are two ADC channels in the ADAU1328 configured as
two stereo pairs with differential inputs. The ADCs can operate
at a nominal sample rate of 48 kHz, 96 kHz, or 192 kHz. The
ADCs include on-board digital antialiasing filters with 79 dB
stop-band attenuation and linear phase response, operating at
an oversampling ratio of 128 (48 kHz, 96 kHz, and 192 kHz
modes). Digital outputs are supplied through two serial data
output pins (one for each stereo pair) and a common frame
(ALRCLK) and bit (ABCLK) clock. Alternatively, one of the
TDM modes can be used to access up to 16 channels on a single
TDM data line.
The ADCs must be driven from a differential signal source for
best performance. The input pins of the ADCs connect to
internal switched capacitors. To isolate the external driving op
amp from the glitches caused by the internal switched capacitors,
each input pin should be isolated by using a series connected,
external, 100 Ω resistor together with a 1 nF capacitor connected
from each input to ground. This capacitor must be of high quality,
for example, ceramic NPO or polypropylene film.
The differential inputs have a nominal common-mode voltage
of 1.5 V. The voltage at the common-mode reference pin (CM)
can be used to bias external op amps to buffer the input signals
(see the Power Supply and Voltage Reference section). The
inputs can also be ac-coupled and do not need an external dc
bias to CM.
A digital high-pass filter can be switched in line with the ADCs
under serial control to remove residual dc offsets. It has a
1.4 Hz, 6 dB per octave cutoff at a 48 kHz sample rate. The
cutoff frequency scales directly with sample frequency.
DIGITAL-TO-ANALOG CONVERTERS (DACs)
The ADAU1328 DAC channels are arranged as single-ended,
four stereo pairs giving eight analog outputs for minimum
external components. The DACs include on-board digital
reconstruction filters with 70 dB stop-band attenuation and linear
phase response, operating at an oversampling ratio of 4 (48 kHz or
96 kHz modes) or 2 (192 kHz mode). Each channel has its own
independently programmable attenuator, adjustable in 255 steps
in increments of 0.375 dB. Digital inputs are supplied through
four serial data input pins (one for each stereo pair) and a
common frame (DLRCLK) and bit (DBCLK) clock. Alternatively,
one of the TDM modes can be used to access up to 16 channels
on a single TDM data line.
Each output pin has a nominal common-mode dc level of 1.5 V
and swings ±1.27 V for a 0 dBFS digital input signal. A single op
amp, third-order, external, low-pass filter is recommended to
remove high frequency noise present on the output pins. The
use of op amps with low slew rate or low bandwidth can cause
high frequency noise and tones to fold down into the audio
band; therefore, exercise care in selecting these components.
The voltage at CM, the common-mode reference pin, can be
used to bias the external op amps that buffer the output signals
(see the Power Supply and Voltage Reference section).
CLOCK SIGNALS
The on-chip phase locked loop (PLL) can be selected to
reference the input sample rate from either of the LRCLK pins
or 256, 384, 512, or 768 times the sample rate, referenced to the
48 kHz mode from the MCLKI pin. The default at power-up is
256 × f
S
from MCLKI. In 96 kHz mode, the master clock fre-
quency stays at the same absolute frequency; therefore, the
actual multiplication rate is divided by 2. In 192 kHz mode,
the actual multiplication rate is divided by 4. For example, if a
device in the ADAU1328 family is programmed in 256 × f
S
mode,
the frequency of the master clock input is 256 × 48 kHz =
12.288 MHz. If the ADAU1328 is then switched to 96 kHz
operation (by writing to the SPI port), the frequency of the
master clock should remain at 12.288 MHz, which is now 128 ×
f
S
. In 192 kHz mode, this becomes 64 × f
S
.
The internal clock for the ADCs is 256 × f
S
for all clock modes.
The internal clock for the DACs varies by mode: 512 × f
S
(48 kHz
mode), 256 × f
S
(96 kHz mode), or 128 × f
S
(192 kHz mode). By
default, the on-board PLL generates this internal master clock
from an external clock. A direct 512 × f
S
(referenced to 48 kHz
mode) master clock can be used for either the ADCs or DACs if
selected in PLL and Clock Control 1 Register.
Note that it is not possible to use a direct clock for the ADCs set
to the 192 kHz mode. It is required that the on-chip PLL be
used in this mode.
The PLL can be powered down in PLL and Clock Control 0
Register. To ensure reliable locking when changing PLL modes,
or if the reference clock is unstable at power-on, power down
the PLL and then power it back up when the reference clock has
stabilized.
The internal MCLK can be disabled in PLL and Clock Control 0
Register to reduce power dissipation when the ADAU1328 is
idle. The clock should be stable before it is enabled. Unless a
standalone mode is selected (see the Serial Control Port
section), the clock is disabled by reset and must be enabled by
writing to the SPI port for normal operation.
ADAU1328 Data Sheet
Rev. B | Page 14 of 32
To maintain the highest performance possible, it is recommended
that the clock jitter of the internal master clock signal be limited
to less than 300 ps rms time interval error (TIE). Even at these
levels, extra noise or tones can appear in the DAC outputs if the
jitter spectrum contains large spectral peaks. If the internal PLL
is not being used, it is highly recommended that an independent
crystal oscillator generate the master clock. In addition, it is
especially important that the clock signal not be passed through
an FPGA, CPLD, or other large digital chip (such as a DSP)
before being applied to the ADAU1328. In most cases, this
induces clock jitter due to the sharing of common power and
ground connections with other unrelated digital output signals.
When the PLL is used, jitter in the reference clock is attenuated
above a certain frequency depending on the loop filter.
RESET AND POWER-DOWN
Reset sets all the control registers to their default settings. To
avoid pops, reset does not power down the analog outputs.
After reset is deasserted, and the PLL acquires lock condition,
an initialization routine runs inside the ADAU1328. This
initialization lasts for approximately 256 MCLKs.
The power-down bits in the PLL and Clock Control 0, DAC
Control 1, and ADC Control 1 registers power down the
respective sections. All other register settings are retained.
The reset pin should be pulled low by an external resistor to
guarantee proper startup.
SERIAL CONTROL PORT
The ADAU1328 has an SPI control port that permits programming
and reading back of the internal control registers for the ADCs,
DACs, and clock system. A standalone mode is available for
operation without serial control, standalone is configured at
reset by connecting CIN, CCLK and
CLATCH
to ground. In
standalone mode, all registers are set to default, except the internal
MCLK enable which is set to 1. The ADC ABCLK and ALRCLK
clock ports are set to master/slave by the connecting the COUT
pin to either DVDD or ground. Standalone mode only supports
stereo mode with an I
2
S data format and 256 f
S
MCLK rate. Refer
to Table 10 for details. If CIN, CCLK, and
CLATCH
are not
grounded, the ADAU1328 SPI port is active. It is recommended
to use a weak pull-up resistor on
CLATCH
in applications that
have a microcontroller. This pull-up resistor ensures that the
ADAU1328 recognizes the presence of a microcontroller.
The SPI control port of the ADAU1328 is a 4-wire serial control
port. The format is similar to the Motorola SPI format except
the input data-word is 24 bits wide. The serial bit clock and
latch can be completely asynchronous to the sample rate of the
ADCs and DACs. Figure 11 shows the format of the SPI signal.
The first byte is a global address with a read/write bit. For the
ADAU1328, the address is 0x04, shifted left 1 bit due to the
R/
W
bit. The second byte is the ADAU1328 register address
and the third byte is the data.
Table 10. Standalone Mode Selection
ADC Clocks CIN/ADR0 COUT/SDA CCLK/SCL
CLATCH
/ADR1
Slave 0 0 0 0
Master 0 1 0 0
D0
D0
D8
D8
D22D23
D9
D9
CLATCH
CCLK
CIN
COUT
t
CCH
t
CCL
t
CDS
t
CDH
t
CLS
t
CCP
t
CLH
t
COTS
t
COD
t
COE
06102-010
Figure 11. Format of SPI Signal

ADAU1328BSTZ-RL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Interface - CODECs 2 ADC/8 DAC w/ PLL 192kHz 24B
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet