AD7714
REV. C–24–
The part also offers ZS Self-Calibration and FS Self-Calibration
options. In these cases, the part performs just a zero-scale or
full-scale calibration respectively and not a full calibration of the
part. A full-scale calibration should not be carried out unless
the part contains valid zero-scale coefficients. These calibrations
are initiated on the AD7714 by writing the appropriate values
(1, 1, 0 for ZS Self-Calibration and 1, 1, 1 for FS Self Calibra-
tion) to the MD2, MD1 and MD0 bits of the Mode Register.
The zero-scale or full-scale calibration is exactly the same as
that described for the full self-calibration. In these cases, the
duration of the calibration is 3 × 1/Output Rate. At this time the
MD2, MD1 and MD0 bits in the Mode Register return to
0, 0, 0. This gives the earliest indication that the calibration
sequence is complete. The DRDY line goes high when calibra-
tion is initiated and does not return low until there is a valid
new word in the data register. The time from the calibration
command being issued to DRDY going low is 6 × 1/Output
Rate. This is made up of 3 × 1/Output Rate for the zero-scale or
full-scale calibration and 3 × 1/Output Rate for a conversion on
the analog input. If DRDY is low before (or goes low during)
the calibration command write to the Mode Register, it may
take up to one modulator cycle (MCLK␣ IN/128) before DRDY
goes high to indicate that calibration is in progress. Therefore,
DRDY should be ignored for up to one modulator cycle after
the last bit of the calibration command is written to the Mode
Register.
The fact that the self-calibration can be performed as a two step
calibration offers another feature. After the sequence of a full
self calibration has been completed, additional offset or gain
calibrations can be performed by themselves to adjust the part’s
zero point or gain. Calibrating one of the parameters, either
offset or gain, will not affect the other parameter.
System Calibration
System calibration allows the AD7714 to compensate for system
gain and offset errors as well as its own internal errors. System
calibration performs the same slope factor calculations as self-
calibration but uses voltage values presented by the system to
the AIN inputs for the zero- and full-scale points. Full System
calibration requires a two-step process, a ZS System Calibration
followed by a FS System Calibration.
For a full system calibration, the zero-scale point must be pre-
sented to the converter first. It must be applied to the converter
before the calibration step is initiated and remain stable until the
step is complete. Once the system zero scale has been set up at
the analog input, a ZS System Calibration is then initiated by
writing the appropriate values (0, 1, 0) to the MD2, MD1 and
MD0 bits of the Mode Register. The zero-scale system calibra-
tion is performed at the selected gain. The duration of the cali-
bration is 3 × 1/Output Rate. At this time, the MD2, MD1 and
MD0 bits in the Mode Register return to 0, 0, 0. This gives the
earliest indication that the calibration sequence is complete. The
DRDY line goes high when calibration is initiated and does not
return low until there is a valid new word in the data register.
The time from the calibration command being issued to DRDY
going low is 4 × 1/Output Rate. This is made up of 3 × 1/Output
Rate for the zero-scale system calibration and 1/Output Rate for
a conversion on the analog input. This conversion on the analog
input is on the same voltage as the zero-scale system calibration
and, therefore, the resultant word in the data register from this
conversion should be a zero-scale reading. If DRDY is low
before (or goes low during) the calibration command write to
the Mode Register, it may take up to one modulator cycle
(MCLK␣ IN/128) before DRDY goes high to indicate that cali-
bration is in progress. Therefore, DRDY should be ignored for
up to one modulator cycle after the last bit of the calibration
command is written to the Mode Register.
After the zero-scale point is calibrated, the full-scale point is
applied to AIN and the second step of the calibration process is
initiated by again writing the appropriate values (0, 1, 1) to
MD2, MD1 and MD0. Again the full-scale voltage must be set
up before the calibration is initiated, and it must remain stable
throughout the calibration step. The full-scale system calibra-
tion is performed at the selected gain. The duration of the cali-
bration is 3 × 1/Output Rate. At this time, the MD2, MD1 and
MD0 bits in the Mode Register return to 0, 0, 0. This gives the
earliest indication that the calibration sequence is complete. The
DRDY line goes high when calibration is initiated and does not
return low until there is a valid new word in the data register.
The time from the calibration command being issued to DRDY
going low is 4 × 1/Output Rate. This is made up of 3 × 1/Out-
put Rate for the full-scale system calibration and 1/Output Rate
for a conversion on the analog input. This conversion on the
analog input is on the same voltage as the full-scale system
calibration and, therefore, the resultant word in the data register
from this conversion should be a full-scale reading. If DRDY is
low before (or goes low during) the calibration command write
to the Mode Register, it may take up to one modulator cycle
(MCLK␣ IN/128) before DRDY goes high to indicate that cali-
bration is in progress. Therefore, DRDY should be ignored for
up to one modulator cycle after the last bit of the calibration
command is written to the Mode Register.
In the unipolar mode, the system calibration is performed
between the two endpoints of the transfer function; in the bipo-
lar mode, it is performed between midscale (zero differential
voltage) and positive full scale.
The fact that the system calibration is a two step calibration
offers another feature. After the sequence of a full system cali-
bration has been completed, additional offset or gain calibra-
tions can be performed by themselves to adjust the system zero
reference point or the system gain. Calibrating one of the
parameters, either system offset or system gain, will not affect
the other parameter. A full-scale calibration should not be car-
ried out unless the part contains valid zero-scale coefficients.
System calibration can also be used to remove any errors from
source impedances on the analog input when the part is used in
unbuffered mode. A simple R, C antialiasing filter on the front
end may introduce a gain error on the analog input voltage but
the system calibration can be used to remove this error.
2
AD7714
REV. C
–25–
System-Offset Calibration
System-offset calibration is a variation of both the system cali-
bration and self-calibration. In this case, the zero-scale point is
determined in exactly the same way as a ZS System Calibration.
The system zero-scale point is presented to the AIN inputs of
the converter. This must be applied to the converter before
the calibration step is initiated and remain stable until the step
is complete. Once the system zero scale has been set up, a
System-Offset Calibration is then initiated by writing the appro-
priate values (1, 0, 0) to the MD2, MD1 and MD0 bits of the
Mode Register. The zero-scale system calibration is performed
at the selected gain.
The full-scale calibration is performed in exactly the same way
as an FS Self Calibration. The full-scale calibration conversion
is performed at the selected gain on an internally generated
voltage of V
REF
/Selected Gain. This is a one step calibration
sequence and the time for calibration is 6 × 1/Output Rate. At
this time, the MD2, MD1 and MD0 bits in the Mode Register
return to 0, 0, 0. This gives the earliest indication that the cali-
bration sequence is complete. The DRDY line goes high when
calibration is initiated and does not return low until there is a
valid new word in the data register. The duration time from the
calibration command being issued to DRDY going low is 9 × 1/
Output Rate. This is made up of 3 × 1/Output Rate for the zero-
scale system calibration, 3 × 1/Output Rate for the full-scale
self-calibration and 3 × 1/Output Rate for a conversion on the
analog input. This conversion on the analog input is on the
same voltage as the zero-scale system calibration and, therefore,
the resultant word in the data register from this conversion
should be a zero-scale reading. If DRDY is low before (or goes
low during) the calibration command write to the Mode Regis-
ter, it may take up to one modulator cycle (MCLK␣ IN/128)
before DRDY goes high to indicate that calibration is in
progress. Therefore, DRDY should be ignored for up to one
modulator cycle after the last bit of the calibration command is
written to the Mode Register.
In the unipolar mode, the system-offset calibration is performed
between the two endpoints of the transfer function; in the bipolar
mode, it is performed between midscale and positive full scale.
Background Calibration
The AD7714 also offers a background calibration mode where
the part interleaves its calibration procedure with its normal
conversion sequence. In the background calibration mode, the
part provides continuous zero-scale self-calibrations; it does not
provide any full-scale calibrations. The zero-scale point used in
determining the calibration coefficients in this mode is exactly
the same as for a ZS Self-Calibration. The background calibra-
tion mode is invoked by writing 1, 0, 1 to the MD2, MD1,
MD0 bits of the Mode Register. When invoked, the back-
ground calibration mode performs a zero-scale self calibration
after every output update and this reduces the output data rate
of the AD7714 by a factor of six. Its advantage is that the part
is continually performing offset calibrations and automatically
updating its zero-scale calibration coefficients. As a result, the
effects of temperature drift, supply sensitivity and time drift on
zero-scale errors are automatically removed. When the back-
ground calibration mode is turned on, the part will remain in
this mode until bits MD2, MD1 and MD0 of the Mode Regis-
ter are changed.
Because the background calibration does not perform full-scale
calibrations, a self-calibration should be performed before plac-
ing the part in background calibration mode. Removal of the
offset drift in this mode leaves gain drift as the only source of
error not removed from the part. The typical gain drift of the
AD7714 with temperature is 0.2␣ ppm/°C. The SYNC input or
FSYNC bit should not be exercised when the part is in back-
ground calibration mode.
Span and Offset Limits
Whenever a system calibration mode is used, there are limits on
the amount of offset and span which can be accommodated.
The overriding requirement in determining the amount of offset
and gain which can be accommodated by the part is the require-
ment that the positive full-scale calibration limit is 1.05 ×
V
REF
/GAIN. This allows the input range to go 5% above the
nominal range. The built-in headroom in the AD7714’s analog
modulator ensures that the part will still operate correctly with a
positive full-scale voltage which is 5% beyond the nominal.
The range of input span in both the unipolar and bipolar modes
has a minimum value of 0.8 × V
REF
/GAIN and a maximum
value of 2.1 × V
REF
/GAIN. However, the span (which is the
difference between the bottom of the AD7714’s input range and
the top of its input range) has to take into account the limitation
on the positive full-scale voltage. The amount of offset which
can be accommodated depends on whether the unipolar or
bipolar mode is being used. Once again, the offset has to take
into account the limitation on the positive full-scale voltage. In
unipolar mode, there is considerable flexibility in handling nega-
tive (with respect to AIN(–)) offsets. In both unipolar and bipo-
lar modes, the range of positive offsets which can be handled by
the part depends on the selected span. Therefore, in determin-
ing the limits for system zero-scale and full-scale calibrations,
the user has to ensure that the offset range plus the span range
does exceed 1.05 × V
REF
/GAIN. This is best illustrated by
looking at a few examples.
If the part is used in unipolar mode with a required span of
0.8 × V
REF
/GAIN, the offset range the system calibration can
handle is from –1.05 × V
REF
/GAIN to +0.25 × V
REF
/GAIN. If
the part is used in unipolar mode with a required span of V
REF
/
GAIN, the offset range the system calibration can handle is
from –1.05 × V
REF
/GAIN to +0.05 × V
REF
/GAIN. Similarly, if
the part is used in unipolar mode and required to remove an
offset of 0.2 × V
REF
/GAIN, the span range the system calibra-
tion can handle is 0.85 × V
REF
/GAIN.
If the part is used in bipolar mode with a required span of
±0.4 × V
REF
/GAIN, then the offset range which the system cali-
bration can handle is from –0.65 × V
REF
/GAIN to +0.65 ×
V
REF
/GAIN. If the part is used in bipolar mode with a required
span of ±V
REF
/GAIN, the offset range the system calibration can
handle is from –0.05 × V
REF
/GAIN to +0.05 × V
REF
/GAIN.
Similarly, if the part is used in bipolar mode and required to
remove an offset of ±0.2 × V
REF
/GAIN, the span range the sys-
tem calibration can handle is ±0.85 × V
REF
/GAIN.
AD7714
REV. C–26–
Power-Up and Calibration
On power-up, the AD7714 performs an internal reset which sets
the contents of the internal registers to a known state. There
are default values loaded to all registers after a power-on or
reset. The default values contain nominal calibration coefficients
for the calibration registers. However, to ensure correct calibra-
tion for the device a calibration routine should be performed
after power-up.
The power dissipation and temperature drift of the AD7714 are
low and no warm-up time is required before the initial calibra-
tion is performed. However, if an external reference is being
used, this reference must have stabilized before calibration is
initiated. Similarly, if the clock source for the part is generated
from a crystal or resonator across the MCLK pins, the start-up
time for the oscillator circuit should elapse before a calibration
is initiated on the part (see below).
USING THE AD7714
Clocking and Oscillator Circuit
The AD7714 requires a master clock input, which may be an
external CMOS compatible clock signal applied to the MCLK␣ IN
pin with the MCLK␣ OUT pin left unconnected. Alternatively, a
crystal or ceramic resonator of the correct frequency can be
connected between MCLK␣ IN and MCLK␣ OUT in which case
the clock circuit will function as an oscillator, providing the
clock source for the part. The input sampling frequency, the
modulator sampling frequency, the –3␣ dB frequency, output
update rate and calibration time are all directly related to the
master clock frequency, f
CLK␣ IN
. Reducing the master clock
frequency by a factor of 2 will halve the above frequencies and
update rate and double the calibration time. The current drawn
from the DV
DD
power supply is also directly related to f
CLK␣ IN
.
Reducing f
CLK␣ IN
by a factor of 2 will halve the DV
DD
current
but will not affect the current drawn from the AV
DD
power supply.
Using the part with a crystal or ceramic resonator between the
MCLK IN and MCLK OUT pins generally causes more cur-
rent to be drawn from DV
DD
than when the part is clocked from
a driven clock signal at the MCLK IN pin. This is because the
on-chip oscillator circuit is active in the case of the crystal or
ceramic resonator. Therefore, the lowest possible current on
the AD7714 is achieved with an externally applied clock at the
MCLK IN pin with MCLK OUT unconnected and unloaded.
The amount of additional current taken by the oscillator
depends on a number of factors—first, the larger the value of
capacitor placed on the MCLK␣ IN and MCLK␣ OUT pins, then
the larger the DV
DD
current consumption on the AD7714. Care
should be taken not to exceed the capacitor values recommended
by the crystal and ceramic resonator manufacturers to avoid
consuming unnecessary DV
DD
current. Typical values recom-
mended by crystal or ceramic resonator manufacturers are in the
range of 30␣ pF to 50␣ pF and if the capacitor values on MCLK
IN and MCLK OUT are kept in this range they will not result
in any excessive DV
DD
current. Another factor that influences
the DV
DD
current is the effective series resistance (ESR) of the
crystal which appears between the MCLK IN and MCLK OUT
pins of the AD7714. As a general rule, the lower the ESR value
then the lower the current taken by the oscillator circuit.
When operating with a clock frequency of 2.4576␣ MHz, there is
no appreciable difference in the DV
DD
current between an
externally applied clock and a crystal resonator when operating
with a DV
DD
of +3␣ V. With DV
DD
= +5␣ V and f
CLK IN
=
2.4576␣ MHz, the typical DV
DD
current increases by 50␣ µA for a
crystal/resonator supplied clock versus an externally applied
clock. The ESR values for crystals and resonators at this fre-
quency tend to be low and as a result there tends to be little
difference between different crystal and resonator types.
When operating with a clock frequency of 1␣ MHz, the ESR
value for different crystal types varies significantly. As a result,
the DV
DD
current drain varies across crystal types. When using
a crystal with an ESR of 700␣ or when using a ceramic resona-
tor, the increase in the typical DV
DD
current over an externally-
applied clock is 50␣ µA with DV
DD
= +3␣ V and 175␣ µA with
DV
DD
= +5␣ V. When using a crystal with an ESR of 3␣ k, the
increase in the typical DV
DD
current over an externally applied
clock is again 50␣ µA with DV
DD
= +3␣ V but 300␣ µA with
DV
DD
= +5␣ V.
The on-chip oscillator circuit also has a start-up time associated
with it before it is oscillating at its correct frequency and correct
voltage levels. The typical start up time for the circuit is 10␣ ms
with a DV
DD
of +5␣ V and 15␣ ms with a DV
DD
of +3␣ V. At 3␣ V
supplies, depending on the loading capacitances on the MCLK
pins, a 1␣ M feedback resistor may be required across the crys-
tal or resonator in order to keep the start up times around the
15␣ ms duration.
The AD7714’s master clock appears on the MCLK OUT pin of
the device. The maximum recommended load on this pin is one
CMOS load. When using a crystal or ceramic resonator to gen-
erate the AD7714’s clock, it may be desirable to then use this
clock as the clock source for the system. In this case, it is recom-
mended that the MCLK OUT signal is buffered with a CMOS
buffer before being applied to the rest of the circuit.
System Synchronization
The SYNC input (or FSYNC bit) allows the user to reset the
modulator and digital filter without affecting any of the setup
conditions on the part. This allows the user to start gathering
samples of the analog input from a known point in time, i.e., the
rising edge of SYNC or when a 1 is written to FSYNC.
The SYNC input can also be used to allow two other functions.
If multiple AD7714s are operated from a common master clock,
they can be synchronized to update their output registers simul-
taneously. A falling edge on the SYNC input (or a 1 written to
the FSYNC bit of the Mode Register) resets the digital filter and
analog modulator and places the AD7714 into a consistent,
known state. While the SYNC input is low (or FSYNC high),
the AD7714 will be maintained in this state. On the rising edge
of SYNC (or when a 0 is written to the FSYNC bit), the modu-
lator and filter are taken out of this reset state and on the next
clock edge the part starts to gather input samples again. In a
system using multiple AD7714s, a common signal to their
SYNC inputs will synchronize their operation. This would nor-
mally be done after each AD7714 has performed its own cali-
bration or has had calibration coefficients loaded to it. The
output updates will then be synchronized with the maximum
possible difference between the output updates of the individual
AD7714s being one MCLK IN cycle.

AD7714ARSZ-5REEL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC CMOS 3V/5V 500uA 24B Signal Condition
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union