2
AD7714
REV. C
–27–
The SYNC input can also be used as a start convert command
allowing the AD7714 to be operated in a conventional converter
fashion. In this mode, the rising edge of SYNC starts conversion
and the falling edge of DRDY indicates when conversion is
complete. The disadvantage of this scheme is that the settling
time of the filter has to be taken into account for every data
register update. This means that the rate at which the data regis-
ter is updated at a three times slower rate in this mode.
Since the SYNC input (or FSYNC bit) resets the digital filter,
the full settling-time of 3 × 1/Output Rate has to elapse before
there is a new word loaded to the output register on the part. If
the DRDY signal is low when SYNC returns high (or FSYNC
goes to a 0), the DRDY signal will not be reset high by the
SYNC (or FSYNC) command. This is because the AD7714
recognizes that there is a word in the data register which has not
been read. The DRDY line will stay low until an update of the
data register takes place at which time it will go high for
500 × t
CLK IN
before returning low again. A read from the data
register resets the DRDY signal high and it will not return low
until the settling time of the filter has elapsed (from the SYNC
or FSYNC command) and there is a valid new word in the data
register. If the DRDY line is high when the SYNC (or FSYNC)
command is issued, the DRDY line will not return low until the
settling time of the filter has elapsed.
Reset Input
The RESET input on the AD7714 resets all the logic, the digital
filter and the analog modulator while all on-chip registers are
reset to their default state. DRDY is driven high and the
AD7714 ignores all communications to any of its registers while
the RESET input is low. When the RESET input returns high,
the AD7714 starts to process data and DRDY will return low in
3 × 1/Output Rate indicating a valid new word in the data regis-
ter. However, the AD7714 operates with its default setup condi-
tions after a RESET and it is generally necessary to set up all
registers and carry out a calibration after a RESET command.
The AD7714’s on-chip oscillator circuit continues to function
even when the RESET input is low. The master clock signal
continues to be available on the MCLK OUT pin. Therefore, in
applications where the system clock is provided by the AD7714’s
clock, the AD7714 produces an uninterrupted master clock
during RESET commands.
Standby Mode
The STANDBY input on the AD7714 allows the user to place
the part in a power-down mode when it is not required to pro-
vide conversion results The AD7714 retains the contents of all
its on-chip registers (including the data register) while in
standby mode. When in standby mode, the digital interface is
reset and DRDY is reset to a Logic 1. Data cannot be accessed
from the part while in standby mode. When released from standby
mode, the part starts to process data and a new word is available
in the data register in 3 ×1/Output rate from when the STANDBY
input goes high.
Placing the part in standby mode reduces the total current to
5␣ µA typical when the part is operated from an external master
clock, provided this master clock is stopped. If the external
clock continues to run in standby mode, the standby current
increases to 150␣ µA typical with 5 V supplies and 75 µA typical
with 3.3 V supplies. If a crystal or ceramic resonator is used as
the clock source, the total current in standby mode is 400␣ µA
typical with 5 V supplies and 90 µA with 3.3 V supplies. This is
because the on-chip oscillator circuit continues to run when the
part is in its standby mode. This is important in applications
where the system clock is provided by the AD7714’s clock, so
that the AD7714 produces an uninterrupted master clock even
when it is in its standby mode.
Accuracy
Sigma-Delta ADCs, like VFCs and other integrating ADCs, do
not contain any source of nonmonotonicity and inherently offer
no missing codes performance. The AD7714 achieves excellent
linearity by the use of high quality, on-chip capacitors, which
have a very low capacitance/voltage coefficient. The device also
achieves low input drift through the use of chopper-stabilized
techniques in its input stage. To ensure excellent performance
over time and temperature, the AD7714 uses digital calibration
techniques that minimize offset and gain error.
Drift Considerations
The AD7714 uses chopper stabilization techniques to minimize
input offset drift. Charge injection in the analog switches and
dc leakage currents at the sampling node are the primary
sources of offset voltage drift in the converter. The dc input
leakage current is essentially independent of the selected gain.
Gain drift within the converter depends primarily upon the
temperature tracking of the internal capacitors. It is not af-
fected by leakage currents.
Measurement errors due to offset drift or gain drift can be elimi-
nated at any time by recalibrating the converter or by operating
the part in the background calibration mode. Using the system
calibration mode can also minimize offset and gain errors in the
signal conditioning circuitry. Integral and differential linearity
errors are not significantly affected by temperature changes.
POWER SUPPLIES
No specific power sequence is required for the AD7714; either
the AV
DD
or the DV
DD
supply can come up first. While the
latch-up performance of the AD7714 is good, it is important
that power is applied to the AD7714 before signals at REF␣ IN,
AIN or the logic input pins in order to avoid latch-up. If this is
not possible, then the current which flows in any of these pins
should be limited. If separate supplies are used for the AD7714
and the system digital circuitry, then the AD7714 should be
powered up first. If it is not possible to guarantee this, then
current limiting resistors should be placed in series with the
logic inputs to again limit the current.
Supply Current
The current consumption on the AD7714 is specified for sup-
plies in the range +3␣ V to +3.6␣ V and in the range +4.75␣ V to
+5.25␣ V. The part operates over a +2.85␣ V to +5.25␣ V supply
range and the I
DD
for the part varies as the supply voltage varies
over this range. Figure 5 shows the variation of the typical
I
DD
with V
DD
voltage for both a 1 MHz external clock and a
2.4576 MHz external clock at +25°C. The AD7714 is operated
in unbuffered mode and the internal boost bit on the part is
turned off. The relationship shows that the I
DD
is minimized by
operating the part with lower V
DD
voltages. I
DD
on the AD7714
is also minimized by using an external master clock or by opti-
mizing external components when using the on-chip oscillator
circuit. The Y grade part is specified from 2.7 V to 3.3 V and
4.75 V to 5.25 V.
AD7714
REV. C–28–
SUPPLY VOLTAGE (AV
DD
& DV
DD
) – Volts
0
2.85
0.9
1.0
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
3.15 3.45 4.05 4.35 4.65 4.95 5.253.75
MCLK IN = 2.4576MHz
MCLK IN = 1MHz
SUPPLY CURRENT (AV
DD
& DV
DD
) – mA
Figure 5. I
DD
vs. Supply Voltage
Grounding and Layout
Since the analog inputs and reference input are differential,
most of the voltages in the analog modulator are common-mode
voltages. The excellent Common-Mode Rejection of the part
will remove common-mode noise on these inputs. The analog
and digital supplies to the AD7714 are independent and sepa-
rately pinned out to minimize coupling between the analog and
digital sections of the device. The digital filter will provide
rejection of broadband noise on the power supplies, except at
integer multiples of the modulator sampling frequency. The
digital filter also removes noise from the analog and reference
inputs provided those noise sources do not saturate the analog
modulator. As a result, the AD7714 is more immune to noise
interference that a conventional high resolution converter. How-
ever, because the resolution of the AD7714 is so high and the
noise levels from the AD7714 so low, care must be taken with
regard to grounding and layout.
The printed circuit board which houses the AD7714 should be
designed such that the analog and digital sections are separated
and confined to certain areas of the board. This facilitates the
use of ground planes which can be separated easily. A minimum
etch technique is generally best for ground planes as it gives the
best shielding. Digital and analog ground planes should only be
joined in one place. If the AD7714 is the only device requiring
an AGND to DGND connection, then the ground planes
should be connected at the AGND and DGND pins of the
AD7714. If the AD7714 is in a system where multiple devices
require AGND to DGND connections, the connection should
still be made at one point only, a star ground point which
should be established as close as possible to the AD7714.
Avoid running digital lines under the device as these will couple
noise onto the die. The analog ground plane should be allowed
to run under the AD7714 to avoid noise coupling. The power
supply lines to the AD7714 should use as large a trace as pos-
sible to provide low impedance paths and reduce the effects of
glitches on the power supply line. Fast switching signals like
clocks should be shielded with digital ground to avoid radiating
noise to other sections of the board and clock signals should
never be run near the analog inputs. Avoid crossover of digital
and analog signals. Traces on opposite sides of the board should
run at right angles to each other. This will reduce the effects of
feedthrough through the board. A microstrip technique is by far
the best but is not always possible with a double-sided board. In
this technique, the component side of the board is dedicated to
ground planes while signals are placed on the solder side.
Good decoupling is important when using high resolution
ADCs. All analog supplies should be decoupled with 10␣ µF
tantalum in parallel with 0.1␣ µF capacitors to AGND. To
achieve the best from these decoupling components, they have
to be placed as close as possible to the device, ideally right up
against the device. All logic chips should be decoupled with
0.1␣ µF disc ceramic capacitors to DGND. In systems where a
common supply voltage is used to drive both the AV
DD
and
DV
DD
of the AD7714, it is recommended that the system’s
AV
DD
supply is used. This supply should have the recommended
analog supply decoupling capacitors between the AV
DD
pin of
the AD7714 and AGND and the recommended digital supply
decoupling capacitor between the DV
DD
pin of the AD7714 and
DGND.
Evaluating the AD7714 Performance
The recommended layout for the AD7714 is outlined in the
evaluation board for the AD7714. The evaluation board pack-
age includes a fully assembled and tested evaluation board,
documentation, software for controlling the board over the
printer port of a PC and software for analyzing the AD7714’s
performance on the PC. For the AD7714-5, the evaluation
board order number is EVAL-AD7714-5EB and for the AD7714-3,
the order number is EVAL-AD7714-3EB.
Noise levels in the signals applied to the AD7714 may also
affect performance of the part. The AD7714 allows two tech-
niques for evaluating the true performance of the part, indepen-
dent of the analog input signal. These schemes should be used
after a calibration has been performed on the part.
The first of these is to select the AIN6/AIN6 input channel
arrangement. In this case, the differential inputs to the AD7714
are internally shorted together to provide a zero differential
voltage for the analog modulator. External to the device, the
AIN6 input should be connected to a voltage that is within the
allowable common-mode range of the part.
The second scheme is to evaluate the part with a voltage near
the input full scale voltage for a gain of 1. To do this, the refer-
ence voltage for the part should be applied to the analog input.
This will give a fixed full-scale reading from the device. If the
zero-scale calibration coefficient is now read from the device,
increased by a number equivalent to about 200 decimal and this
value reloaded to the zero-scale calibration register, the input
range will be offset such that a voltage equal to reference voltage
no longer corresponds to a full-scale reading. This allows the
user to evaluate the noise performance of the part with a near
full-scale voltage.
2
AD7714
REV. C
–29–
DIGITAL INTERFACE
The AD7714’s programmable functions are controlled using a
set of on-chip registers as previously outlined. Data is written to
these registers via the part’s serial interface, and read access to
the on-chip registers is also provided by this interface. All com-
munications to the part must start with a write operation to the
Communications Register. After power-on or RESET, the de-
vice expects a write to its Communications Register. The data
written to this register determines whether the next operation to
the part is a read or a write operation and also determines to
which register this read or write operation occurs. Therefore,
write access to any of the other registers on the part starts with a
write operation to the Communications Register followed by a
write to the selected register. A read operation from any register
on the part (including the output data register) starts with a
write operation to the Communications Register followed by a
read operation from the selected register.
The AD7714’s serial interface consists of five signals, CS,
SCLK, DIN, DOUT and DRDY. The DIN line is used for
transferring data into the on-chip registers while the DOUT line
is used for accessing data from the on-chip registers. SCLK is
the serial clock input for the device and all data transfers (either
on DIN or DOUT) take place with respect to this SCLK signal.
The DRDY line is used as a status signal to indicate when data
is ready to be read from the AD7714’s data register. DRDY
goes low when a new data word is available in the output regis-
ter. It is reset high when a read operation from the data register
is complete. It also goes high prior to the updating of the output
register to indicate when not to read from the device to ensure
that a data read is not attempted while the register is being
updated. CS is used to select the device. It can be used to de-
code the AD7714 in systems where a number of parts are con-
nected to the serial bus.
The AD7714 serial interface can operate in three-wire mode by
tying the CS input low. In this case, the SCLK, DIN and
DOUT lines are used to communicate with the AD7714 and
the status of DRDY can be obtained by interrogating the MSB
of the Communications Register.
Figures 6 and 7 show timing diagrams for interfacing to the
AD7714 with CS used to decode the part. Figure 6 is for a read
operation from the AD7714’s output shift register, while Figure
7 shows a write operation to the input shift register. Both dia-
grams are for the POL input at a logic high; for operation with
the POL input at a logic low simply invert the SCLK waveform
shown in the diagrams. It is possible to read the same data
twice from the output register even though the DRDY line
returns high after the first read operation. Care must be taken,
however, to ensure that the read operations have been com-
pleted before the next output update is about to take place.
The serial interface can be reset by exercising the RESET input
on the part. It can also be reset by writing a series of 1s on the
DIN input. If a logic 1 is written to the AD7714 DIN line for at
least 32 serial clock cycles the serial interface is reset. This
ensures in three-wire systems that if the interface gets lost, either
via a software error or by some glitch in the system, it can be
reset back into a known state. This state returns the interface to
where the AD7714 is expecting a write operation to the Com-
munications Register. This operation does not in itself reset the
contents of any registers but since the interface was lost, the
information that was written to any of the registers is unknown
and it is advisable to set up all registers again.
Figure 6. Read Cycle Timing Diagram (POL = 1)
Figure 7. Write Cycle Timing Diagram (POL = 1)
DOUT
SCLK
CS
DRDY
MSB
t
5
t
7
t
9
LSB
t
8t
6
t
4
t
3
t
10
DIN
SCLK
CS
MSB
t
12
t
15
LSB
t
16
t
14
t
11
t
13

AD7714ARSZ-5REEL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC CMOS 3V/5V 500uA 24B Signal Condition
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union