REV. B
–13–
AD7853/AD7853L
WRITE TO CONTROL REGISTER SETTING STCAL = 0, RDSLT1 = 1,
RDSLT0 = 0, AND CALSLT1, CALSLT0 = 00, 01, 10, 11
CAL REGISTER POINTER IS
AUTOMATICALLY RESET
FINISHED
NO
YES
START
READ CAL REGISTER
CAL REGISTER POINTER IS
AUTOMATICALLY INCREMENTED
LAST
REGISTER
READ
OPERATION
OR
ABORT
?
Figure 9. Flowchart for Reading from the Calibration
Registers
Adjusting the Offset Calibration Register
The offset calibration register contains 16 bits, two leading zeros
and 14 data bits. By changing the contents of the offset register,
different amounts of offset on the analog input signal can be
compensated for. Increasing the number in the offset calibra-
tion register compensates for negative offset on the analog input
signal, and decreasing the number in the offset calibration regis-
ter compensates for positive offset on the analog input signal.
The default value of the offset calibration register is 0010 0000
0000 0000 approximately. This is not an exact value, but the
value in the offset register should be close to this value. Each of
the 14 data bits in the offset register is binary weighted; the
MSB has a weighting of 5% of the reference voltage, the MSB-1
has a weighting of 2.5%, the MSB-2 has a weighting of 1.25%,
and so on down to the LSB, which has a weighting of 0.0006%.
This gives a resolution of ±0.0006% of V
REF
approximately.
More accurately the resolution is ±(0.05 × V
REF
)/2
13
volts =
±0.015 mV, with a 2.5 V reference. The maximum offset that
can be compensated for is ±5% of the reference voltage, which
equates to ±125 mV with a 2.5 V reference and ±250 mV with a
5 V reference.
Q. If a +20 mV offset is present in the analog input signal and the
reference voltage is 2.5 V, what code needs to be written to the
offset register to compensate for the offset ?
A. 2.5 V reference implies that the resolution in the offset
register is 5% × 2.5 V/2
13
= 0.015 mV. +20 mV/0.015 mV
= 1310.72; rounding to the nearest number gives 1311. In
binary terms this is 0101 0001 1111, therefore decrease the
offset register by 0101 0001 1111.
This method of compensating for offset in the analog input
signal allows for fine tuning the offset compensation. If the
offset on the analog input signal is known, there will be no need
to apply the offset voltage to the analog input pins and do a
system calibration. The offset compensation can take place in
software.
Adjusting the Gain Calibration Register
The gain calibration register contains 16 bits, two leading 0s
and 14 data bits. The data bits are binary weighted as in the
offset calibration register. The gain register value is effectively
multiplied by the analog input to scale the conversion result
over the full range. Increasing the gain register compensates for
a smaller analog input range and decreasing the gain register
compensates for a larger input range. The maximum analog
input range that the gain register can compensate for is 1.025
times the reference voltage, and the minimum input range is
0.975 times the reference voltage.
REV. B
–14–
AD7853/AD7853L
edge of CONVST occurs at least 10 ns typically before this
CLKIN edge. The conversion cycle will take 16.5 CLKIN
periods from this CLKIN falling edge. If the 10 ns setup time is
not met, the conversion will take 17.5 CLKIN periods. The
maximum specified conversion time is 4.6 µs for the AD7853
(18 t
CLKIN,
CLKIN = 4 MHz) and 10 µs for the AD7853L (18
t
CLKIN
, CLKIN = 1.8 MHz). When a conversion is completed,
the BUSY output goes low, and then the result of the conver-
sion can be read by accessing the data through the serial inter-
face. To obtain optimum performance from the part, the read
operation should not occur during the conversion or 400␣ ns
prior to the next CONVST rising edge. However, the maximum
throughput rates are achieved by reading/writing during conver-
sion, and reading/writing during conversion is likely to degrade
the Signal to (Noise + Distortion) by only 0.5 dBs. The AD7853
can operate at throughput rates up to 200 kHz, 100 kHz for
the AD7853L. For the AD7853/AD7853L a conversion takes
18 CLKIN periods, 2 CLKIN periods are needed for the
acquisition time giving a full cycle time of 5 µs (= 200 kHz,
CLKIN = 4 MHz). For the AD7853L 100 kHz throughput can
be obtained as follows: the CLKIN and CONVST signals are
arranged to give a conversion time of 16.5 CLKIN periods as
described above, 1.5 CLKIN periods are allowed for the acqui-
sition time. This gives a full cycle time of 10 µs (= 100 kHz,
CLKIN = 1.8 MHz). When using the software conversion start
for maximum throughput, the user must ensure the control register
write operation extends beyond the falling edge of BUSY. The
falling edge of BUSY resets the CONVST bit to 0 and allows it to
be reprogrammed to 1 to start the next conversion.
CIRCUIT INFORMATION
The AD7853/AD7853L is a fast, 12-bit single supply A/D con-
verter. The part requires an external 4 MHz/1.8 MHz master
clock (CLKIN), two C
REF
capacitors, a CONVST signal to start
conversion and power supply decoupling capacitors. The part
provides the user with track/hold, on-chip reference, calibration
features, A/D converter and serial interface logic functions on a
single chip. The A/D converter section of the AD7853/AD7853L
consists of a conventional successive-approximation converter
based around a capacitor DAC. The AD7853/AD7853L accepts
an analog input range of 0 to +V
DD
where the reference can be
tied to V
DD
. The reference input to the part is buffered on-chip.
A major advantage of the AD7853/AD7853L is that a conver-
sion can be initiated in software as well as applying a signal to
the CONVST pin. Another innovative feature of the AD7853/
AD7853L is self-calibration on power-up, which is initiated
having a capacitor from the CAL pin to AGND, to give superior
dc accuracy (See Automatic Calibration on Power-Up section).
The part is available in a 24-lead SSOP package, which offers
the user considerable space-saving advantages over alternative
solutions. The AD7853L version typically consumes only 5.5 mW,
making it ideal for battery-powered applications.
CONVERTER DETAILS
The master clock for the part must be applied to the CLKIN
pin. Conversion is initiated on the AD7853/AD7853L by puls-
ing the CONVST input or by writing to the control register and
setting the CONVST bit to 1. On the rising edge of CONVST
(or at the end of the control register write operation), the on-
chip track/hold goes from track to hold mode. The falling edge
of the CLKIN signal which follows the rising edge of the edge of
CONVST signal initiates the conversion, provided the rising
AV
DD
DV
DD
AIN(+)
AIN(–)
AMODE
C
REF1
C
REF2
SLEEP
DIN
DOUT
SYNC
SM1
SM2
CONVST
AGND
DGND
CLKIN
SCLK
REF
IN
/REF
OUT
POLARITY
AD7853/53L
ANALOG SUPPLY
+3V TO +5V
0.1mF 0.1mF10mF
DV
DD
UNIPOLAR
RANGE
0.1mF
0.01mF
SERIAL MODE
SELECTION BITS
MASTER CLOCK INPUT
CONVERSION
START INPUT
FRAME SYNC OUTPUT
SERIAL DATA OUTPUT
0.1mF
CAL
AUTO CAL ON
POWER-UP
INTERNAL/EXTERNAL
REFERENCE
0V TO 2.5V
INPUT
4MHz/1.8MHz OSCILLATOR
SERIAL CLOCK OUTPUT
DV
DD
200kHz/100kHz PULSE
GENERATOR
CH1
CH2
CH3
CH4
OSCILLOSCOPE
OPTIONAL EXTERNAL
REFERENCE
AD780/REF-192
DIN AT DGND
=> NO WRITING
TO DEVICE
0.01mF
4 LEADING ZEROS
FOR ADC DATA
Figure 10. Typical Circuit
REV. B
–15–
AD7853/AD7853L
DC/AC Applications
For dc applications high source impedances are acceptable,
provided there is enough acquisition time between conversions
to charge the 20 pF capacitor. The acquisition time can be
calculated from the above formula for different source imped-
ances. For example with R
IN
= 5 k, the required acquisition
time will be 922 ns.
For ac applications, removing high frequency components from
the analog input signal is recommended by use of an RC low-
pass filter on the AIN(+) pin, as shown in Figure 13. In applica-
tions where harmonic distortion and signal to noise ratio are
critical, the analog input should be driven from a low impedance
source. Large source impedances will significantly affect the ac
performance of the ADC. This may necessitate the use of an
input buffer amplifier. The choice of the op amp will be a func-
tion of the particular application.
When no amplifier is used to drive the analog input the source
impedance should be limited to low values. The maximum
source impedance will depend on the amount of total harmonic
distortion (THD) that can be tolerated. The THD will increase
as the source impedance increases and performance will degrade.
Figure 12 shows a graph of the Total Harmonic Distortion vs.
analog input signal frequency for different source impedances.
With the setup as in Figure 13, the THD is at the –90 dB level.
With a source impedance of 1 k and no capacitor on the AIN(+)
pin, the THD increases with frequency.
INPUT FREQUENCY – kHz
–72
–76
–92
0 100
THD – dB
20 40 60 80
–80
–84
–88
R
IN
= 1kV
R
IN
= 50V, 10nF
AS IN FIGURE 13
THD VS. FREQUENCY FOR DIFFERENT
SOURCE IMPEDANCES
Figure 12. THD vs. Analog Input Frequency
In a single supply application (both 3 V and 5 V), the V+ and
V– of the op amp can be taken directly from the supplies to the
AD7853/AD7853L which eliminates the need for extra external
power supplies. When operating with rail-to-rail inputs and
outputs at frequencies greater than 10 kHz, care must be taken
in selecting the particular op amp for the application. In particu-
lar, for single supply applications the input amplifiers should be
connected in a gain of –1 arrangement to get the optimum per-
formance. Figure 13 shows the arrangement for a single supply
application with a 50 and 10 nF low-pass filter (cutoff fre-
quency 320 kHz) on the AIN(+) pin. Note that the 10 nF is a
capacitor with good linearity to ensure good ac performance.
Recommended single supply op amps are the AD820 and the
AD820-3 V.
TYPICAL CONNECTION DIAGRAM
Figure 10 shows a typical connection diagram for the AD7853/
AD7853L. The DIN line is tied to DGND so that no data is
written to the part. The AGND and the DGND pins are con-
nected together at the device for good noise suppression. The
CAL pin has a 0.01 µF capacitor to enable an automatic self-
calibration on power-up. The SCLK and SYNC are configured
as outputs by having SM1 and SM2 at DV
DD
. The conversion
result is output in a 16-bit word with four leading zeros followed
by the MSB of the 12-bit result. Note that after the AV
DD
and
DV
DD
power-up, the part will require approximately 150 ms for
the internal reference to settle and for the automatic calibration
on power-up to be completed.
For applications where power consumption is a major concern,
the SLEEP pin can be connected to DGND. See Power-Down
section for more detail on low power applications.
ANALOG INPUT
The equivalent circuit of the analog input section is shown in
Figure 11. During the acquisition interval the switches are both
in the track position and the AIN(+) charges the 20 pF capaci-
tor through the 125 resistance. On the rising edge of CONVST
switches SW1 and SW2 go into the hold position retaining
charge on the 20 pF capacitor as a sample of the signal on
AIN(+). The AIN(–) is connected to the 20 pF capacitor, and
this unbalances the voltage at Node A at the input of the com-
parator. The capacitor DAC adjusts during the remainder of the
conversion cycle to restore the voltage at Node A to the correct
value. This action transfers a charge, representing the analog
input signal, to the capacitor DAC which in turn forms a digital
representation of the analog input signal. The voltage on the
AIN(–) pin directly influences the charge transferred to the
capacitor DAC at the hold instant. If this voltage changes dur-
ing the conversion period, the DAC representation of the analog
input voltage will be altered. Therefore it is most important that
the voltage on the AIN(–) pin remains constant during the con-
version period. Furthermore, it is recommended that the AIN(–)
pin is always connected to AGND or to a fixed dc voltage.
AIN(+)
AIN(–)
125V
20pF
TRACK
HOLD
CAPACITOR
DAC
COMPARATOR
HOLD
TRACK
C
REF2
125V
SW1
SW2
NODE A
Figure 11. Analog Input Equivalent Circuit
Acquisition Time
The track and hold amplifier enters its tracking mode on the
falling edge of the BUSY signal. The time required for the track
and hold amplifier to acquire an input signal will depend on
how quickly the 20 pF input capacitance is charged. The acqui-
sition time is calculated using the formula:
t
ACQ
= 9 × (R
IN
+ 125 ) × 20 pF
where R
IN
is the source impedance of the input signal, and 125 ,
20 pF is the input R, C.

AD7853ARZ-REEL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 3-5V SGL Supply 200kSPS 12B
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union