SC16IS741A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 1 — 18 March 2013 28 of 55
NXP Semiconductors
SC16IS741A
Single UART with I
2
C-bus/SPI interface, 64-byte FIFOs, IrDA SIR
8.12 Transmission Control Register (TCR)
This 8-bit register is used to store the RX FIFO threshold levels to stop/start transmission
during hardware/software flow control. Table 24
shows Transmission Control Register bit
settings.
TCR trigger levels are available from 0 to 60 characters with a granularity of four.
Remark: TCR can only be written to when EFR[4] = 1 and MCR[2] = 1. The programmer
must program the TCR such that TCR[3:0] > TCR[7:4]. There is no built-in hardware
check to make sure this condition is met. Also, the TCR must be programmed with this
condition before auto RTS
or software flow control is enabled to avoid spurious operation
of the device.
8.13 Trigger Level Register (TLR)
This 8-bit register is used to store the transmit and received FIFO trigger levels used for
interrupt generation. Trigger levels from 4 to 60 can be programmed with a granularity
of 4. Table 25
shows trigger level register bit settings.
Remark: TLR can only be written to when EFR[4] = 1 and MCR[2] = 1. If TLR[3:0] or
TLR[7:4] are logical 0, the selectable trigger levels via the FIFO Control Register (FCR)
are used for the transmit and receive FIFO trigger levels. Trigger levels from 4 characters
to 60 characters are available with a granularity of four. The TLR should be programmed
for
N
4
, where N is the desired trigger level.
When the trigger level setting in TLR is zero, the SC16IS741A uses the trigger level
setting defined in FCR. If TLR has non-zero trigger level value, the trigger level defined in
FCR is discarded. This applies to both transmit FIFO and receive FIFO trigger level
setting.
When TLR is used for RX trigger level control, FCR[7:6] should be left at the default state,
that is, ‘00’.
8.14 Transmitter FIFO Level register (TXLVL)
This register is a read-only register, it reports the number of spaces available in the
transmit FIFO.
Table 24. Transmission Control Register bits description
Bit Symbol Description
7:4 TCR[7:4] RX FIFO trigger level to resume
3:0 TCR[3:0] RX FIFO trigger level to halt transmission
Table 25. Trigger Level Register bits description
Bit Symbol Description
7:4 TLR[7:4] RX FIFO trigger levels (4 to 60), number of characters available.
3:0 TLR[3:0] TX FIFO trigger levels (4 to 60), number of spaces available.
Table 26. Transmitter FIFO Level register bits description
Bit Symbol Description
7 - not used; set to zeros
6:0 TXLVL[6:0] number of spaces available in TX FIFO, from 0 (0x00) to 64 (0x40)
SC16IS741A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 1 — 18 March 2013 29 of 55
NXP Semiconductors
SC16IS741A
Single UART with I
2
C-bus/SPI interface, 64-byte FIFOs, IrDA SIR
8.15 Receiver FIFO Level register (RXLVL)
This register is a read-only register, it reports the fill level of the receive FIFO. That is, the
number of characters in the RX FIFO.
8.16 Extra Features Control Register (EFCR)
Table 27. Receiver FIFO Level register bits description
Bit Symbol Description
7 - not used; set to zeros
6:0 RXLVL[6:0] number of characters stored in RX FIFO, from 0 (0x00) to 64 (0x40)
Table 28. Extra Features Control Register bits description
Bit Symbol Description
7 IRDA MODE IrDA mode
0 = IrDA SIR,
3
16
pulse ratio, data rate up to 115.2 kbit/s
6- reserved
5 RTSINVER invert RTS
signal in RS-485 mode
0: RTS
= 0 during transmission and RTS = 1 during reception
1: RTS = 1 during transmission and RTS = 0 during reception
4 RTSCON enable the transmitter to control the RTS
pin
0 = transmitter does not control RTS
pin
1 = transmitter controls RTS
pin
3- reserved
2 TXDISABLE Disable transmitter. UART does not send serial data out on the
transmit pin, but the transmit FIFO will continue to receive data from
host until full. Any data in the TSR will be sent out before the
transmitter goes into disable state.
0: transmitter is enabled
1: transmitter is disabled
1 RXDISABLE Disable receiver. UART will stop receiving data immediately once this
bit set to a 1, and any data in the TSR will be sent to the receive FIFO.
User is advised not to set this bit during receiving.
0: receiver is enabled
1: receiver is disabled
0 9-BIT MODE Enable 9-bit or Multidrop mode (RS-485).
0: normal RS-232 mode
1: enables RS-485 mode
SC16IS741A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 1 — 18 March 2013 30 of 55
NXP Semiconductors
SC16IS741A
Single UART with I
2
C-bus/SPI interface, 64-byte FIFOs, IrDA SIR
9. RS-485 features
9.1 Auto RS-485 RTS control
Normally the RTS pin is controlled by MCR bit 1, or if hardware flow control is enabled, the
logic state of the RTS
pin is controlled by the hardware flow control circuitry. EFCR
register bit 4 will take the precedence over the other two modes; once this bit is set, the
transmitter will control the state of the RTS
pin. The transmitter automatically asserts the
RTS
pin (logic 0) once the host writes data to the transmit FIFO, and de-asserts RTS pin
(logic 1) once the last bit of the data has been transmitted.
To use the auto RS-485 RTS
mode the software would have to disable the hardware flow
control function.
9.2 RS-485 RTS output inversion
EFCR bit 5 reverses the polarity of the RTS pin if the UART is in auto RS-485 RTS mode.
When the transmitter has data to be sent it de-asserts the RTS
pin (logic 1), and when the
last bit of the data has been sent out the transmitter asserts the RTS
pin (logic 0).
9.3 Auto RS-485
EFCR bit 0 is used to enable the RS-485 mode (multidrop or 9-bit mode). In this mode of
operation, a ‘master’ station transmits an address character followed by data characters
for the addressed ‘slave’ stations. The slave stations examine the received data and
interrupt the controller if the received character is an address character (parity bit = 1).
To use the auto RS-485 mode the software would have to disable the hardware and
software flow control functions.
9.3.1 Normal multidrop mode
The 9-bit Mode in EFCR (bit 0) is enabled, but not Special Character Detect (EFR bit 5).
The receiver is set to Force Parity 0 (LCR[5:3] = 111) in order to detect address bytes.
With the receiver initially disabled, it ignores all the data bytes (parity bit = 0) until an
address byte is received (parity bit = 1). This address byte will cause the UART to set the
parity error. The UART will generate a line status interrupt (IER bit 2 must be set to ‘1’ at
this time), and at the same time puts this address byte in the RX FIFO. After the controller
examines the byte it must make a decision whether or not to enable the receiver; it should
enable the receiver if the address byte addresses its ID address, and must not enable the
receiver if the address byte does not address its ID address.
If the controller enables the receiver, the receiver will receive the subsequent data until
being disabled by the controller after the controller has received a complete message
from the ‘master’ station. If the controller does not disable the receiver after receiving a
message from the ‘master’ station, the receiver will generate a parity error upon receiving
another address byte. The controller then determines if the address byte addresses its ID
address, if it is not, the controller then can disable the receiver. If the address byte
addresses the ‘slave’ ID address, the controller takes no further action, the receiver will
receive the subsequent data.

SC16IS741AIPWJ

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
UART Interface IC SC16IS741AIPW/TSSOP16///REEL 13 Q1 NDP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet