P89LPC952_954_4 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 04 — 24 July 2008 40 of 69
NXP Semiconductors
P89LPC952/954
8-bit microcontroller with 10-bit ADC
7.22 Analog comparators
Two analog comparators are provided on the P89LPC952/954. Input and output options
allow use of the comparators in a number of different configurations. Comparator
operation is such that the output is a logical one (which may be read in a register and/or
routed to a pin) when the positive input (one of two selectable pins) is greater than the
negative input (selectable from a pin or an internal reference voltage). Otherwise the
output is a zero. Each comparator may be configured to cause an interrupt when the
output value changes.
The overall connections to both comparators are shown in Figure 15. The comparators
function to V
DD
= 2.4 V.
When each comparator is first enabled, the comparator output and interrupt flag are not
guaranteed to be stable for 10 µs. The corresponding comparator interrupt should not be
enabled during that time, and the comparator interrupt flag must be cleared before the
interrupt is enabled in order to prevent an immediate interrupt service.
Fig 14. SPI single master multiple slaves configuration
002aaa903
master slave
8-BIT SHIFT
REGISTER
SPI CLOCK
GENERATOR
8-BIT SHIFT
REGISTER
MISO
MOSI
SPICLK
port
port
MISO
MOSI
SPICLK
SS
slave
8-BIT SHIFT
REGISTER
MISO
MOSI
SPICLK
SS
P89LPC952_954_4 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 04 — 24 July 2008 41 of 69
NXP Semiconductors
P89LPC952/954
8-bit microcontroller with 10-bit ADC
7.22.1 Internal reference voltage
An internal reference voltage generator may supply a default reference when a single
comparator input pin is used. The value of the internal reference voltage, referred to as
V
ref(bg)
, is 1.23 V ± 10 %.
7.22.2 Comparator interrupt
Each comparator has an interrupt flag contained in its configuration register. This flag is
set whenever the comparator output changes state. The flag may be polled by software or
may be used to generate an interrupt. The two comparators use one common interrupt
vector. If both comparators enable interrupts, after entering the interrupt service routine,
the user needs to read the flags to determine which comparator caused the interrupt.
7.22.3 Comparators and power reduction modes
Either or both comparators may remain enabled when Power-down or Idle mode is
activated, but both comparators are disabled automatically in Total Power-down mode.
If a comparator interrupt is enabled (except in Total Power-down mode), a change of the
comparator output state will generate an interrupt and wake-up the processor. If the
comparator output to a pin is enabled, the pin should be configured in the push-pull mode
in order to obtain fast switching times while in Power-down mode. The reason is that with
the oscillator stopped, the temporary strong pull-up that normally occurs during switching
on a quasi-bidirectional port pin does not take place.
Comparators consume power in Power-down and Idle modes, as well as in the normal
operating mode. This fact should be taken into account when system power consumption
is an issue. To minimize power consumption, the user can disable the comparators via
PCONA.5, or put the device in Total Power-down mode.
Fig 15. Comparator input and output connections
comparator 1
CP1
CN1
(P0.4) CIN1A
(P0.3) CIN1B
(P0.5) CMPREF
V
ref(bg)
OE1
change detect
CO1
CMF1
interrupt
002aaa904
CMP1 (P0.6)
EC
change detect
CMF2
comparator 2
OE2
CO2
CMP2 (P0.0)
CP2
CN2
(P0.2) CIN2A
(P0.1) CIN2B
P89LPC952_954_4 © NXP B.V. 2008. All rights reserved.
Product data sheet Rev. 04 — 24 July 2008 42 of 69
NXP Semiconductors
P89LPC952/954
8-bit microcontroller with 10-bit ADC
7.23 KBI
The Keypad Interrupt function is intended primarily to allow a single interrupt to be
generated when Port 0 is equal to or not equal to a certain pattern. This function can be
used for bus address recognition or keypad recognition. The user can configure the port
via SFRs for different tasks.
The Keypad Interrupt Mask Register (KBMASK) is used to define which input pins
connected to Port 0 can trigger the interrupt. The Keypad Pattern Register (KBPATN) is
used to define a pattern that is compared to the value of Port 0. The Keypad Interrupt Flag
(KBIF) in the Keypad Interrupt Control Register (KBCON) is set when the condition is
matched while the Keypad Interrupt function is active. An interrupt will be generated if
enabled. The PATN_SEL bit in the Keypad Interrupt Control Register (KBCON) is used to
define equal or not-equal for the comparison.
In order to use the Keypad Interrupt as an original KBI function like in 87LPC76x series,
the user needs to set KBPATN = 0FFH and PATN_SEL = 1 (not equal), then any key
connected to Port 0 which is enabled by the KBMASK register will cause the hardware to
set KBIF and generate an interrupt if it has been enabled. The interrupt may be used to
wake-up the CPU from Idle or Power-down modes. This feature is particularly useful in
handheld, battery-powered systems that need to carefully manage power consumption
yet also need to be convenient to use.
In order to set the flag and cause an interrupt, the pattern on Port 0 must be held longer
than six CCLKs.
7.24 Watchdog timer
The watchdog timer causes a system reset when it underflows as a result of a failure to
feed the timer prior to the timer reaching its terminal count. It consists of a programmable
12-bit prescaler, and an 8-bit down counter. The down counter is decremented by a tap
taken from the prescaler. The clock source for the prescaler is either the PCLK or the
nominal 400 kHz watchdog oscillator. The watchdog timer can only be reset by a
power-on reset. When the watchdog feature is disabled, it can be used as an interval timer
and may generate an interrupt. Figure 16 shows the watchdog timer in Watchdog mode.
Feeding the watchdog requires a two-byte sequence. If PCLK is selected as the watchdog
clock and the CPU is powered down, the watchdog is disabled. The watchdog timer has a
time-out period that ranges from a few µs to a few seconds. Please refer to the
P89LPC952/954
User’s Manual
for more details.

P89LPC952FA,512

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
Microcontrollers - MCU 8-bit Microcontrollers - MCU 80C51 8K FL 512B RAM
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union