Data Sheet AD9888
Rev. C | Page 15 of 36
Table 5. Recommended VCO Range and Charge Pump Current Settings for Standard Display Formats
Standard Resolution Refresh Rate (Hz) Horizontal Frequency (kHz) Pixel Rate (MHz) VCO Range Charge Pump Current
VGA 640 × 480 60 31.5 25.175 00 010
72 37.7 31.500 00 100
75 37.5 31.500 00 100
85 43.3 36.000 00 100
SVGA 800 × 600 56 35.1 36.000 00 100
60 37.9 40.000 00 101
72 48.1 50.000 01 011
75 46.9 49.500 01 011
85 53.7 56.250 01 011
XGA 1024 × 768 60 48.4 65.000 01 100
70 56.5 75.000 01 100
75 60.0 78.750 01 101
80 64.0 85.500 10 011
85 68.3 94.500 10 011
SXGA 1280 × 1024 64.0 64.0 108.000 10 011
80.0 80.0 135.000 10 100
UXGA 1600 × 1200 60 75.0 162.000 11 100
85 106.3 229.500
1
10 110
QXGA 2048 × 1536 60 96.8 260.000
1
11 100
2048 × 1536 75 120.0 315.000
1
11 100
TV Modes 480i 60 15.75 13.510 00 000
480p 60 31.47 27.000 00 011
720p 60 45.0 74.250 01 011
1080i 60 33.75 74.250 01 011
1080p 60 33.75 148.500 10 011
1
Graphics sampled at half the incoming pixel rate using alternate pixel sampling mode.
Four programmable registers are provided to optimize the
performance of the PLL:
The 12-bit divisor registers. The input HSYNC frequencies
range from 15 kHz to 110 kHz. The PLL multiplies the
frequency of the HSYNC signal, producing pixel clock
frequencies in the range of 10 MHz to 170 MHz. The
divisor register controls the exact multiplication factor.
This register can be set to any value between 221 and 4095.
(The divide ratio that is actually used is the programmed
divide ratio plus one.)
The 2-bit VCO range register. To lower the sensitivity of
the output frequency to noise on the control signal, the
VCO operating frequency range is divided into four
overlapping regions. The VCO range register sets this
operating range. Because there are just four possible
regions, only the two least significant bits of the VCO
range register are used. The frequency ranges for the
lowest and highest regions are shown in Table 6.
Table 6. VCO Frequency Ranges
PV1 PV0 Pixel Clock Range (MHz) KVCO Gain (MHz/V)
0 0 10 to 41 150
0 1 41 to 82 150
1 0 82 to 150 150
1 1 150+ 180
The 3-bit charge pump current register. This register allows
the current that drives the low-pass loop filter to be varied.
The possible current values are listed in Table 7 .
Table 7. Charge Pump Current/Control Bits
Ip2 Ip1 Ip0 Current (μA)
0 0 0 50
0 0 1 100
0 1 0 150
0 1 1 250
1 0 0 350
1 0 1 500
1 1 0 750
1 1 1 1500
AD9888 Data Sheet
Rev. C | Page 16 of 36
The 5-bit phase adjust register. The phase of the generated
sampling clock may be shifted to locate an optimum sampling
point within a clock cycle. The phase adjust register provides
32 phase-shift steps of 11.25° each. The HSYNC signal with
an identical phase shift is available through the HSOUT pin.
Phase adjustment is still available if the pixel clock is being
provided externally. The COAST pin is used to allow the
PLL to continue to run at the same frequency in the absence
of the incoming HSYNC signal. This can be used during the
vertical sync period, or any other time that the HSYNC signal
is unavailable. The polarity of the COAST signal can be set
through the coast polarity register, and the polarity of the
HSYNC signal can be set through the HSYNC polarity
register.
ALTERNATE PIXEL SAMPLING MODE
A Logic 1 input on the clock invert pin (CKINV, Pin 29) inverts
the nominal ADC clock. CKINV can be switched between frames
to implement the alternate pixel sampling mode. This allows
higher effective image resolution to be achieved at lower pixel
rates, but with lower frame rates.
On one frame, only even pixels are digitized. On the subsequent
frame, odd pixels are sampled. By reconstructing the entire frame
in the graphics controller, a complete image can be reconstructed.
This is similar to the interlacing process employed in broadcast
television systems, but the interlacing is vertical instead of
horizontal. The frame data is still presented to the display at the
full desired refresh rate (usually 60 Hz), so there are no flicker
artifacts added.
OEOEOEOEOEOE
OEOEOEOEOEOE
OEOEOEOEOEOE
OEOEOEOEOEOE
OEOEOEOEOEOE
OEOEOEOEOEOE
OEOEOEOEOEOE
OEOEOEOEOEOE
OEOEOEOEOEOE
OEOEOEOEOEOE
02442-009
Figure 10. Odd and Even Pixels in a Frame
E2 E2 E2 E2
E2 E2 E2 E2
E2 E2 E2 E2
E2 E2 E2 E2
E2 E2 E2 E2
E2 E2 E2 E2
E2 E2 E2 E2
E2 E2 E2 E2
E2 E2 E2 E2
E2 E2 E2 E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
E2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
O2
02442-011
Figure 11. Even Pixels from Frame 2
O1 O1
O1 O1
O1 O1
O1 O1
O1 O1
O1 O1
O1 O1
O1 O1
O1 O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
E1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1 O1 O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
O1
02442-010
Figure 12. Odd Pixels from Frame 1
O1 E2 O1 E2 O1 E2 O1 E2 O1 E2 O1 E2
O1 E2 O1 E2 O1 E2 O1 E2 O1 E2 O1 E2
O1 E2 O1 E2 O1 E2 O1 E2 O1 E2 O1 E2
O1 E2 O1 E2 O1 E2 O1 E2 O1 E2 O1 E2
O1 E2 O1 E2 O1 E2 O1 E2 O1 E2 O1 E2
O1 E2 O1 E2 O1 E2 O1 E2 O1 E2 O1 E2
O1 E2 O1 E2 O1 E2 O1 E2 O1 E2 O1 E2
O1 E2 O1 E2 O1 E2 O1 E2 O1 E2 O1 E2
O1 E2 O1 E2 O1 E2 O1 E2 O1 E2 O1 E2
O1 E2 O1 E2 O1 E2 O1 E2 O1 E2 O1 E2
02442-012
Figure 13. Combined Frame Output from Graphics
O3 E2 O3 E2 O3 E2 O3 E2 O3 E2 O3 E2
O3 E2 O3 E2 O3 E2 O3 E2 O3 E2 O3 E2
O3 E2 O3 E2 O3 E2 O3 E2 O3 E2 O3 E2
O3 E2 O3 E2 O3 E2 O3 E2 O3 E2 O3 E2
O3 E2 O3 E2 O3 E2 O3 E2 O3 E2 O3 E2
O3 E2 O3 E2 O3 E2 O3 E2 O3 E2 O3 E2
O3 E2 O3 E2 O3 E2 O3 E2 O3 E2 O3 E2
O3 E2 O3 E2 O3 E2 O3 E2 O3 E2 O3 E2
O3 E2 O3 E2 O3 E2 O3 E2 O3 E2 O3 E2
O3 E2 O3 E2 O3 E2 O3 E2 O3 E2 O3 E2
02442-013
Figure 14. Subsequent Frame from Controller
Data Sheet AD9888
Rev. C | Page 17 of 36
TIMING
Figure 16 through Figure 25 show the operation of the AD9888
analog interface in all clock modes. The part establishes timing
by sending the pixel corresponding with the leading edge of
HSYNC to the A data port. In dual-channel mode, the next sample
is to the B data port. Subsequent samples are alternated between
the A and B data ports. In single-channel mode, data is sent to the
A data port only, and the B data port is placed in a high impedance
state. The output data clock signal is created so that its rising
edge always occurs between transitions of the A port data and
so that it can be used to latch the output data externally.
DATACK
DATACK
RGB DATA OUTPUT
HSOUT
t
SKEW
t
PER
t
DCYCLE
02442-014
Figure 15. Output Timing
HSYNC Timing
Horizontal sync is processed in the AD9888 to eliminate
ambiguity in the timing of the leading edge with respect to
the phase-delayed pixel clock and data.
The HSYNC input is used as a reference to generate the pixel
sampling clock. To optimize the pixel sampling time, the sampling
phase can be adjusted with respect to HSYNC through a full
360° in 32 steps via the clock phase adjust register. Display systems
use HSYNC to align memory and display write cycles; therefore,
it is important to have a stable timing relationship between the
HSYNC output (HSOUT) and data clock (DATACK).
Three things happen to horizontal sync in the AD9888. First,
the polarity of HSYNC input is determined and, therefore, has a
known output polarity. The known output polarity can be
programmed either active high or active low (Register 0x0E, Bit 5).
Second, HSOUT is aligned with DATACK and data outputs. Third,
the duration of HSOUT (in pixel clocks) is set via Register 0x07.
HSOUT is the sync signal that should be used to drive the rest
of the display system.
Coast Timing
In most computer systems, the HSYNC signal is provided
continuously on a dedicated wire. In these systems, the COAST
input and function are unnecessary and should not be used. In
some systems, however, HSYNC is disturbed during the vertical
sync period (VSYNC). In some cases, HSYNC pulses disappear.
In other systems, such as those that use composite sync (Csync)
or embedded sync-on-green (SOG) signals, HSYNC includes
equalization pulses or other distortions during VSYNC. To avoid
upsetting the clock generator during VSYNC, it is important to
ignore these distortions. If the PLL generated pixel clock sees
extraneous pulses, it attempts to lock to this new frequency and
changes frequency by the end of the VSYNC period. It then
requires a few lines of correct HSYNC timing to recover at the
beginning of a new frame, resulting in a “tearing” of the image
at the top of the display.
The COAST input pin is provided to eliminate this problem. It
is an asynchronous input that disables the PLL input and holds
the clock at its current frequency. The PLL can operate in this
manner for several lines without significant frequency drift.
P0 P1 P2 P3 P4 P5 P6 P7
D0 D1 D2 D3 D4
RGB INPUT
HSYNC
PXCK
HS
ADCCK
(INTERNAL)
DATACK
DOUTA
HSOUT
8 PIPELINE DELAY
VARIABLE DURATION
02442-015
Figure 16. Single-Port Mode

AD9888KSZ-140

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Display Interface IC 140MHz Analog Graphics Interface
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet