XR16L2552
16
2.25V TO 5.5V DUART WITH 16-BYTE FIFO REV. 1.1.2
FIGURE 11. AUTO RTS AND CTS FLOW CONTROL OPERATION
The local UART (UARTA) starts data transfer by asserting RTSA# (1). RTSA# is normally connected to CTSB# (2) of
remote UART (UARTB). CTSB# allows its transmitter to send data (3). TXB data arrives and fills UARTA receive FIFO
(4). When RXA data fills up to its receive FIFO trigger level, UARTA activates its RXA data ready interrupt (5) and con-
tinues to receive and put data into its FIFO. If interrupt service latency is long and data is not being unloaded, UARTA
monitors its receive data fill level to match the upper threshold of RTS delay and de-assert RTSA# (6). CTSB# follows
(7) and request UARTB transmitter to suspend data transfer. UARTB stops or finishes sending the data bits in its trans-
mit shift register (8). When receive FIFO data in UARTA is unloaded to match the lower threshold of RTS delay (9),
UARTA re-asserts RTSA# (10), CTSB# recognizes the change (11) and restarts its transmitter and data flow again until
next receive FIFO trigger (12). This same event applies to the reverse direction when UARTA sends data to UARTB
with RTSB# and CTSA# controlling the data flow.
RTSA# CTSB#
RXA TXB
Transmitter
Receiver FIFO
Trigger Reached
Auto RTS
Trigger Level
Auto CTS
Monitor
RTSA#
TXB
RXA FIFO
CTSB#
Remote UART
UARTB
Local UART
UARTA
ON
OFF
ON
Suspend
Restart
RTS High
Threshold
Data Starts
ON
OFF
ON
Assert RTS# to Begin
Transmission
1
2
3
4
5
6
7
Receive
Data
RTS Low
Threshold
9
10
11
Receiver FIFO
Trigger Reached
Auto RTS
Trigger Level
Transmitter
Auto CTS
Monitor
RTSB#CTSA#
RXBTXA
INTA
(RXA FIFO
Interrupt)
RX FIFO
Trigger Level
RX FIFO
Trigger Level
8
12
RTSCTS1
XR16L2552
17
REV. 1.1.2 2.25V TO 5.5V DUART WITH 16-BYTE FIFO
2.16 Auto Xon/Xoff (Software) Flow Control
When software flow control is enabled (See Table 12), the L2552 compares one or two sequential receive data
characters with the programmed Xon or Xoff-1,2 character value(s). If receive character(s) (RX) match the
programmed values, the L2552 will halt transmission (TX) as soon as the current character has completed
transmission. When a match occurs, the Xoff (if enabled via IER bit-5) flag will be set and the interrupt output
pin will be activated. Following a suspension due to a match of the Xoff character, the L2552 will monitor the
receive data stream for a match to the Xon-1,2 character. If a match is found, the L2552 will resume operation
and clear the flags (ISR bit-4).
Reset initially sets the contents of the Xon/Xoff 8-bit flow control registers to a logic 0. Following reset the user
can write any Xon/Xoff value desired for software flow control. Different conditions can be set to detect Xon/
Xoff characters (See Table 12) and suspend/resume transmissions. When double 8-bit Xon/Xoff characters are
selected, the L2552 compares two consecutive receive characters with two software flow control 8-bit values
(Xon1, Xon2, Xoff1, Xoff2) and controls TX transmissions accordingly. Under the above described flow control
mechanisms, flow control characters are not placed (stacked) in the user accessible RX data buffer or FIFO.
In the event that the receive buffer is overfilling and flow control needs to be executed, the L2552 automatically
sends an Xoff message (when enabled) via the serial TX output to the remote modem. The L2552 sends the
Xoff-1,2 characters two-character-times (= time taken to send two characters at the programmed baud rate)
after the receive FIFO crosses the programmed trigger level. To clear this condition, the L2552 will transmit the
programmed Xon-1,2 characters as soon as receive FIFO is less than one trigger level below the programmed
trigger level. See Table 6 below.
* After the trigger level is reached, an xoff character is sent after a short span of time (= time required to send 2
characters); for example, after 2.083ms has elapsed for 9600 baud and 8-bit word length, no parity and 1 stop bit setting.
2.17 Special Character Detect
A special character detect feature is provided to detect an 8-bit character when bit-5 is set in the Enhanced
Feature Register (EFR). When this character (Xoff2) is detected, it will be placed in the FIFO along with normal
incoming RX data.
The L2552 compares each incoming receive character with Xoff-2 data. If a match exists, the received data will
be transferred to FIFO and ISR bit-4 will be set to indicate detection of special character. Although the Internal
Register Table shows Xon, Xoff Registers with eight bits of character information, the actual number of bits is
dependent on the programmed word length. Line Control Register (LCR) bits 0-1 defines the number of
character bits, i.e., either 5 bits, 6 bits, 7 bits, or 8 bits. The word length selected by LCR bits 0-1 also
determines the number of bits that will be used for the special character comparison. Bit-0 in the Xon, Xoff
Registers corresponds with the LSB bit for the receive character.
T
ABLE 6: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL
RX TRIGGER LEVEL INT PIN ACTIVATION
XOFF CHARACTER(S) SENT
(CHARACTERS IN RX FIFO)
XON CHARACTER(S) SENT
(CHARACTERS IN RX FIFO)
11 1* 0
44 4* 1
88 8* 4
14 14 14* 8
XR16L2552
18
2.25V TO 5.5V DUART WITH 16-BYTE FIFO REV. 1.1.2
2.18 Infrared Mode
The L2552 UART includes the infrared encoder and decoder compatible to the IrDA (Infrared Data
Association) version 1.0. The IrDA 1.0 standard that stipulates the infrared encoder sends out a
3/16 of a bit
wide HIGH-pulse for each “0” bit in the transmit data stream. This signal encoding reduces the on-time of the
infrared LED, hence reduces the power consumption. See
Figure 12 below.
The infrared encoder and decoder are enabled by setting MCR register bit-6 to a ‘1’. When the infrared feature
is enabled, the transmit data output, TX, idles at logic zero level. Likewise, the RX input assumes an idle level
of logic zero from a reset and power up, see Figure 12.
Typically, the wireless infrared decoder receives the input pulse from the infrared sensing diode on the RX pin.
Each time it senses a light pulse, it returns a logic 1 to the data bit stream.
F
IGURE 12. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING
Character
Data Bits
Start
Stop
0000 0
11 111
Bit Time
1/16 Clock Delay
IRdecoder
-
RX Data
Receive
IR Pulse
(RX pin)
Character
Data Bits
Start
Stop
0000 0
11 111
TX Data
Transmit
IR Pulse
(TX Pin)
Bit Time
1/2 Bit Time
3/16 Bit Time
IrEncoder-1

XR16L2552IJ-F

Mfr. #:
Manufacturer:
MaxLinear
Description:
UART Interface IC UART
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union