xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
PCA85233 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 4 — 6 May 2015 10 of 54
NXP Semiconductors
PCA85233
Automotive 80 × 4 LCD driver for low multiplex rates
x = data bit unchanged
Fig 5. Relationships between LCD layout, drive mode, display RAM filling order, and display data transmitted over the I
2
C-bus
DDM
DF E'3I HJG
06% /6%
E'3 F D G J I H
06% /6%
DE I JHFG'3
06% /6%
FEDI JHG'3
06% /6%
GULYHPRGH
VWDWLF

PXOWLSOH[

PXOWLSOH[

PXOWLSOH[
/&'VHJPHQWV /&'EDFNSODQHV GLVSOD\5$0ILOOLQJRUGHU WUDQVPLWWHGGLVSOD\E\WH
%3
%3
%3
%3
%3
%3
%3
%3
%3
%3
Q
F
[
[
[
E
[
[
[
D
[
[
[
I
[
[
[
J
[
[
[
H
[
[
[
G
[
[
[
'3
[
[
[
Q Q Q Q Q Q Q
URZV
GLVSOD\5$0
URZVEDFNSODQH
RXWSXWV%3
E\WH
FROXPQV
GLVSOD\5$0DGGUHVVVHJPHQWRXWSXWVV
Q
D
E
[
[
I
J
[
[
H
F
[
[
G
'3
[
[
Q Q Q
E\WH E\WH
URZV
GLVSOD\5$0
URZVEDFNSODQH
RXWSXWV%3
FROXPQV
GLVSOD\5$0DGGUHVVVHJPHQWRXWSXWVV
Q
E
'3
F
[
D
G
J
[
I
H
[
[
Q Q
E\WH E\WH E\WH
URZV
GLVSOD\5$0
URZVEDFNSODQH
RXWSXWV%3
FROXPQV
GLVSOD\5$0DGGUHVVVHJPHQWRXWSXWVV
Q
Q
D
F
E
'3
I
H
J
G
E\WH E\WH E\WH E\WH E\WH
URZV
GLVSOD\5$0
URZVEDFNSODQH
RXWSXWV%3
FROXPQV
GLVSOD\5$0DGGUHVVVHJPHQWRXWSXWVV
6
Q
6
Q
6
Q
6
Q
'3
D
I
E
J
H
F
G
6
Q
6
Q
6
Q
6
Q
6
Q
6
Q
6
Q
6
Q
'3
D
I
E
J
H
F
G
6
Q
6
Q
6
Q
'3
D
I
E
J
H
F
G
6
Q
6
Q
'3
D
I
E
J
H
F
G
PCA85233 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 4 — 6 May 2015 11 of 54
NXP Semiconductors
PCA85233
Automotive 80 × 4 LCD driver for low multiplex rates
7.3.1 Data pointer
The addressing mechanism for the display RAM is realized using a data pointer. This
allows the loading of an individual display data byte, or a series of display data bytes, into
any location of the display RAM. The sequence commences with the initialization of the
data pointer by the load-data-pointer command (see Table 7
). Following this command, an
arriving data byte is stored at the display RAM address indicated by the data pointer. The
filling order is shown in Figure 5
. After each byte is stored, the content of the data pointer
is automatically incremented by a value dependent on the selected LCD drive mode:
In static drive mode by eight
In 1:2 multiplex drive mode by four
In 1:3 multiplex drive mode by three
In 1:4 multiplex drive mode by two
If an I
2
C-bus data access is terminated early then the state of the data pointer is unknown.
Consequently, the data pointer must be rewritten prior to further RAM accesses.
7.3.2 Subaddress counter
The storage of display data is determined by the content of the subaddress counter.
Storage is allowed only when the content of the subaddress counter match with the
hardware subaddress applied to A0 and A1. The subaddress counter value is defined by
the device-select command (see Table 8
). If the content of the subaddress counter and
the hardware subaddress do not match, then data storage is inhibited but the data pointer
is incremented as if data storage had taken place. The subaddress counter is also
incremented when the data pointer overflows.
The storage arrangements described lead to extremely efficient data loading in cascaded
applications. When a series of display bytes are sent to the display RAM, automatic
wrap-over to the next PCA85233 occurs when the last RAM address is exceeded.
Subaddressing across device boundaries is successful even if the change to the next
device in the cascade occurs within a transmitted character.
The hardware subaddress must not be changed whilst the device is being accessed on
the I
2
C-bus interface.
7.3.3 RAM writing in 1:3 multiplex drive mode
In 1:3 multiplex drive mode, the RAM is written as shown in Table 13 (see Figure 5 as
well).
Table 13. Standard RAM filling in 1:3 multiplex drive mode
Assumption: BP2/S2, BP2/S5, BP2/S8 etc. are not connected to any segments/elements on the
display.
Display RAM
bits (rows)/
backplane
outputs (BPn)
Display RAM addresses (columns)/segment outputs (Sn)
0 1 2 3 4 5 6 7 8 9 :
0 a7 a4 a1 b7 b4 b1 c7 c4 c1 d7 :
1 a6 a3 a0 b6 b3 b0 c6 c3 c0 d6 :
2 a5 a2 - b5 b2 - c5 c2 - d5 :
3 ----------:
PCA85233 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 4 — 6 May 2015 12 of 54
NXP Semiconductors
PCA85233
Automotive 80 × 4 LCD driver for low multiplex rates
If the bit at position BP2/S2 would be written by a second byte transmitted, then the
mapping of the segment bits would change as illustrated in Table 14
.
In the case described in Table 14 the RAM has to be written entirely and BP2/S2, BP2/S5,
BP2/S8 etc. have to be connected to segments/elements on the display. This can be
achieved by a combination of writing and rewriting the RAM like follows:
In the first write to the RAM, bits a7 to a0 are written.
In the second write, bits b7 to b0 are written, overwriting bits a1 and a0 with bits b7
and b6.
In the third write, bits c7 to c0 are written, overwriting bits b1 and b0 with bits c7 and
c6.
Depending on the method of writing to the RAM (standard or entire filling by rewriting),
some segments/elements remain unused or can be used, but it has to be considered in
the module layout process as well as in the driver software design.
7.3.4 Writing over the RAM address boundary
In all multiplex drive modes, depending on the setting of the data pointer, it is possible to
fill the RAM over the RAM address boundary. If the PCA85233 is part of a cascade the
additional bits fall into the next device that also generates the acknowledge signal. If the
PCA85233 is a single device or the last device in a cascade the additional bits will be
discarded and no acknowledge signal will be generated.
7.3.5 Output bank selector
The output bank selector (see Table 9) selects one of the four rows per display RAM
address for transfer to the display register. The actual row selected depends on the
selected LCD drive mode in operation and on the instant in the multiplex sequence.
In 1:4 multiplex mode, all RAM addresses of row 0 are selected, these are followed by
the contents of row 1, 2, and then 3
In 1:3 multiplex mode, rows 0, 1, and 2 are selected sequentially
In 1:2 multiplex mode, rows 0 and 1 are selected
In static mode, row 0 is selected
The PCA85233 includes a RAM bank switching feature in the static and 1:2 multiplex
drive modes. In the static drive mode, the bank-select command may request the contents
of row 2 to be selected for display instead of the contents of row 0. In the 1:2 multiplex
Table 14. Entire RAM filling by rewriting in 1:3 multiplex drive mode
Assumption: BP2/S2, BP2/S5, BP2/S8 etc. are connected to segments/elements on the display.
Display RAM
bits (rows)/
backplane
outputs (BPn)
Display RAM addresses (columns)/segment outputs (Sn)
0 1 2 3 4 5 6 7 8 9 :
0 a7 a4 a1/b7 b4 b1/c7 c4 c1/d7 d4 d1/e7 e4 :
1 a6 a3 a0/b6 b3 b0/c6 c3 c0/d6 d3 d0/e6 e3 :
2 a5 a2 b5 b2 c5 c2 d5 d2 e5 e2 :
3 ----------:

PCA85233UG/2DA/Q1Z

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
LCD Drivers PCA85233UG/WLCSP201//2DA/Q1/DIE 3 WAFFLE CARRIERS
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet