9397 750 14965 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Product data sheet Rev. 02 — 20 June 2005 31 of 58
Philips Semiconductors
SC16C654B/654DB
5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 64-byte FIFOs
7.6 Modem Control Register (MCR)
This register controls the interface with the modem or a peripheral device.
Table 16: LCR[5] parity selection
LCR[5] LCR[4] LCR[3] Parity selection
X X 0 no parity
0 0 1 odd parity
0 1 1 even parity
1 0 1 forced parity ‘1’
1 1 1 forced parity ‘0’
Table 17: LCR[2] stop bit length
LCR[2] Word length Stop bit length (bit times)
0 5, 6, 7, 8 1
15 1
1
2
1 6, 7, 8 2
Table 18: LCR[1:0] word length
LCR[1] LCR[0] Word length
005
016
107
118
Table 19: Modem Control Register bits description
Bit Symbol Description
7 MCR[7] Clock select.
logic 0 = divide-by-1. The input clock (crystal or external) is divided by 16
and then presented to the Programmable Baud Rate Generator (BGR)
without further modification, that is, divide-by-1. (normal default condition).
logic 1 = divide-by-4. The divide-by-1 clock described in MCR[7] = a logic 0,
if further divided by four. Also see
Section 6.9 “Programmable baud rate
generator”.
6 MCR[6] IR enable.
logic 0 = enable the standard modem receive and transmit input/output
interface (normal default condition)
logic 1 = enable infrared IrDA receive and transmit inputs/outputs. While in
this mode, the TX/RX output/inputs are routed to the infrared
encoder/decoder. The data input and output levels will conform to the IrDA
infrared interface requirement. As such, while in this mode, the infrared TX
output will be a logic 0 during idle data conditions.
5 MCR[5] Xon Any.
logic 0 = disable Xon Any function (for 16C554 compatibility) (normal default
condition)
logic 1 = enable Xon Any function. In this mode, any RX character received
will enable Xon
9397 750 14965 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Product data sheet Rev. 02 — 20 June 2005 32 of 58
Philips Semiconductors
SC16C654B/654DB
5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 64-byte FIFOs
4 MCR[4] Loop-back. Enable the local loop-back mode (diagnostics). In this mode the
transmitter output (
TX) and the receiver input (RX), CTS, DSR, CD, and RI are
disconnected from the SC16C654B/654DB I/O pins. Internally the modem
data and control pins are connected into a loop-back data configuration; see
Figure 12. In this mode, the receiver and transmitter interrupts remain fully
operational. The Modem Control Interrupts are also operational, but the
interrupts’ sources are switched to the lower four bits of the Modem Control.
Interrupts continue to be controlled by the IER register.
logic 0 = disable loop-back mode (normal default condition)
logic 1 = enable local loop-back mode (diagnostics)
3 MCR[3]
OP2, INTx enable. Used to control the modem CD signal in the loop-back
mode.
logic 0 = forces INTA-INTD outputs to the 3-state mode during the 16 mode
(normal default condition). In the loop-back mode, sets
OP2 (CD) internally
to a logic 1.
logic 1 = forces the INTA-INTD outputs to the active mode during the
16 mode. In the loop-back mode, sets
OP2 (CD) internally to a logic 0.
2 MCR[2]
OP1. This bit is used in the Loop-back mode only. In the loop-back mode, this
bit is used to write the state of the modem
RI interface signal via OP1.
1 MCR[1]
RTS
logic 0 = force
RTS output to a logic 1 (normal default condition)
logic 1 = force
RTS output to a logic 0
Automatic RTS may be used for hardware flow control by enabling EFR[6].
See
Table 22.
0 MCR[0]
DTR
logic 0 = force
DTR output to a logic 1 (normal default condition)
logic 1 = force
DTR output to a logic 0
Table 19: Modem Control Register bits description
…continued
Bit Symbol Description
9397 750 14965 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Product data sheet Rev. 02 — 20 June 2005 33 of 58
Philips Semiconductors
SC16C654B/654DB
5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 64-byte FIFOs
7.7 Line Status Register (LSR)
This register provides the status of data transfers between the SC16C654B/654DB and
the CPU.
Table 20: Line Status Register bits description
Bit Symbol Description
7 LSR[7] FIFO data error.
logic 0 = no error (normal default condition)
logic 1 = at least one parity error, framing error or break indication is in the
current FIFO data. This bit is cleared when LSR register is read.
6 LSR[6] THR and TSR empty. This bit is the Transmit Empty indicator. This bit is set to a
logic 1 whenever the transmit holding register and the transmit shift register are
both empty. It is reset to logic 0 whenever either the THR or TSR contains a data
character. In the FIFO mode, this bit is set to ‘1’ whenever the transmit FIFO and
transmit shift register are both empty.
5 LSR[5] THR empty. This bit is the Transmit Holding Register Empty indicator. This bit
indicates that the UART is ready to accept a new character for transmission. In
addition, this bit causes the UART to issue an interrupt to CPU when the THR
interrupt enable is set. The THR bit is set to a logic 1 when a character is
transferred from the transmit holding register into the transmitter shift register.
The bit is reset to a logic 0 concurrently with the loading of the transmitter
holding register by the CPU. In the FIFO mode, this bit is set when the transmit
FIFO is empty; it is cleared when at least 1 byte is written to the transmit FIFO.
4 LSR[4] Break interrupt.
logic 0 = no break condition (normal default condition)
logic 1 = the receiver received a break signal (RX was a logic 0 for one
character frame time). In the FIFO mode, only one break character is loaded
into the FIFO.
3 LSR[3] Framing error.
logic 0 = no framing error (normal default condition)
logic 1 = framing error. The receive character did not have a valid stop bit(s). In
the FIFO mode, this error is associated with the character at the top of the
FIFO.
2 LSR[2] Parity error.
logic 0 = no parity error (normal default condition)
logic 1 = parity error. The receive character does not have correct parity
information and is suspect. In the FIFO mode, this error is associated with the
character at the top of the FIFO.
1 LSR[1] Overrun error.
logic 0 = no overrun error (normal default condition)
logic 1 = overrun error. A data overrun error occurred in the receive shift
register. This happens when additional data arrives while the FIFO is full. In
this case, the previous data in the shift register is overwritten. Note that under
this condition, the data byte in the receive shift register is not transferred into
the FIFO, therefore the data in the FIFO is not corrupted by the error.
0 LSR[0] Receive data ready.
logic 0 = no data in receive holding register or FIFO (normal default condition)
logic 1 = data has been received and is saved in the receive holding register or
FIFO

SC16C654DBIB64,151

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
UART Interface IC 4CH. UART 64B FIFO
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union