LTC6803-2/LTC6803-4
13
680324fa
OPERATION
THEORY OF OPERATION
The LTC6803 is a data acquisition IC capable of mea-
suring the voltage of 12 series connected battery cells.
An input multiplexer connects the batteries to a 12-bit
delta-sigma analog-to-digital converter (ADC). An internal
8ppm/°C voltage reference combined with the ADC give
the LTC6803 its outstanding measurement accuracy. The
inherent benefits of the delta-sigma ADC versus other types
of ADCs (e.g., successive approximation) are explained
in Advantages of Delta-Sigma ADCs in the Applications
Information section.
Communication between the LTC6803 and a host processor
is handled by a SPI compatible serial interface. Multiple
LTC6803s can be connected to a single serial interface.
As shown in Figure 1, the LTC6803-2s or LTC6803-4s
are isolated from one another using digital isolators. A
unique addressing scheme allows all the LTC6803-2s or
LTC6803-4s to connect to the same serial port of the host
processor. Further explanation of the LTC6803-2/LTC6803-
4 can be found in the Serial Port section of the data sheet.
The LTC6803 also contains circuitry to balance cell voltages.
Internal MOSFETs can be used to discharge cells. These
internal MOSFETs can also be used to control external
balancing circuits. Figure 1 illustrates cell balancing by
internal discharge. Figure 3 shows the S pin controlling
an external balancing circuit. It is important to note that
the LTC6803 makes no decisions about turning on/off
the internal MOSFETs. This is completely controlled by
the host processor. The host processor writes values to
a configuration register inside the LTC6803 to control the
switches. The watchdog timer on the LTC6803 can be used
to turn off the discharge switches if communication with
the host processor is interrupted.
Since the LTC6803-4 separates C0 and V
, C0 can have
higher potential than V
. This feature is very useful for
super capacitors and fuel cells whose voltages can go to
zero or slightly negative. In such a case, the stacked cells
can’t power the LTC6803-4. In Figure 1, an isolated 36V
and –3.6V provides power to each LTC6803-4. This allows
the C1 to C12 pins to go up to 3.6V below C0.
The LTC6803 has three modes of operation: hardware
shutdown, standby and measure. Hardware shutdown is
a true zero power mode. Standby mode is a power saving
state where all circuits except the serial interface are turned
off. In measure mode, the LTC6803 is used to measure
cell voltages and store the results in memory. Measure
mode will also monitor each cell voltage for overvoltage
(OV) and undervoltage (UV) conditions.
HARDWARE SHUTDOWN MODE
The V
+
pin can be disconnected from the C pins and the
battery pack. If the V
+
supply pin is 0V, the LTC6803 will
typically draw less than 1nA from the battery cells. All
circuits inside the IC are off. It is not possible to com-
municate with the IC when V
+
= 0V. See the Applications
Information section for hardware shutdown circuits.
STANDBY MODE
The LTC6803 defaults (powers up) to standby mode.
Standby mode is the lowest supply current state with a
supply connected. Standby current is typically 12µA when
V
+
= 44V. All circuits are turned off except the serial interface
and the voltage regulator. For the lowest possible standby
current consumption, all SPI logic inputs should be set to
logic 1 level. The LTC6803 can be programmed for standby
mode by setting the comparator duty cycle configuration
bits, CDC[2:0], to 0. If the part is put into standby mode
while ADC measurements are in progress, the measure-
ments will be interrupted and the cell voltage registers will
be in an indeterminate state. To exit standby mode, the CDC
bits must be written to a value other than 0.
MEASURE MODE
The LTC6803 is in measure mode when the CDC bits are
programmed with a value from 1 to 7. When CDC = 1 the
LTC6803 is on and waiting for a start ADC conversion
command. When CDC is 2 through 7 the IC monitors each
cell voltage and produces an interrupt signal on the SDO
pin indicating all cell voltages are within the UV and OV
limits. The value of the CDC bits determines how often
the cells are monitored, and, how much average supply
current is consumed.
LTC6803-2/LTC6803-4
14
680324fa
OPERATION
Figure 1. Simplified 96-Cell Battery or Supercapacitor, Isolated Interface. In this Diagram the Battery
Negative is Isolated from the Module Ground. Isolated Power Supplies Each LTC6803-4. Opto-Couplers
or Digital Isolators Allow Each IC to Be Addressed Individually
+
+
+
+
+
+
+
+
+
+
+
V
+
C12
S12
C11
S11
C10
S10
C9
S9
C8
S8
C7
S7
C6
S6
C5
S5
C4
S4
C3
S3
C2
CSBI
SDO
SDI
SCKI
A3
A2
A1
A0
GPIO2
GPIO1
WDTB
TOS
V
REG
V
REF
V
TEMP2
V
TEMP1
NC
V
C0
S1
C1
S2
LTC6803-4
IC #1
V2
V2
V2
+
3V
ADDRESS1
ADDRESS0
OE2
DIGITAL
ISOLATOR
V1
V1
V1
+
OE1
+
+
+
+
+
+
+
+
+
+
+
+
V
+
C12
S12
C11
S11
C10
S10
C9
S9
C8
S8
C7
S7
C6
S6
C5
S5
C4
S4
C3
S3
C2
CSBI
SDO
SDI
SCKI
A3
A2
A1
A0
GPIO2
GPIO1
WDTB
TOS
V
REG
V
REF
V
TEMP2
V
TEMP1
NC
V
C0
S1
C1
S2
LTC6803-4
IC #0
V2
V2
V2
+
3V
OE2
DIGITAL
ISOLATOR
V1
V1
V1
+
OE1
+
+
+
+
+
+
+
+
+
+
+
+
V
+
C12
S12
C11
S11
C10
S10
C9
S9
C8
S8
C7
S7
C6
S6
C5
S5
C4
S4
C3
S3
C2
CSBI
SDO
SDI
SCKI
A3
A2
A1
A0
GPIO2
GPIO1
WDTB
TOS
V
REG
V
REF
V
TEMP2
V
TEMP1
NC
V
C0
S1
C1
S2
LTC6803-4
IC #7
V2
V2
V2
+
3V
OE2
DIGITAL
ISOLATOR
V1
V1
V1
+
OE1
680324 F01
MPU
3V
MODULE
IO
CS
MISO
M0SI
CLK
ADDRESS7
12V
ISOLATED
DC/DC
CONVERTER
12V
ISOLATED
DC/DC
CONVERTER
12VISOLATED
DC/DC
CONVERTER
LTC6803-2/LTC6803-4
15
680324fa
OPERATION
There are two methods for indicating the UV/OV inter-
rupt status: toggle polling (using a 1kHz output signal)
and level polling (using a high or low output signal). The
polling methods are described in the Serial Port section.
The UV/OV limits are set by the V
UV
and V
OV
values in the
configuration registers. When a cell voltage exceeds the
UV/OV limits a bit is set in the flag register. The UV and
OV flag status for each cell can be determined using the
Read Flag Register Group.
An ADC measurement can be requested at any time when
the IC is in measure mode. To initiate cell voltage measure-
ments while in measure mode, a Start A/D Conversion
command is sent. After the command has been sent, the
LTC6803 will indicate the A/D converter status via toggle
polling or level polling (as described in the Serial Port
section). During cell voltage measurement commands,
the UV and OV flags (within the flag register group) are
also updated. When the measurements are complete, the
part will continue monitoring UV and OV conditions at
the rate designated by the CDC bits. Note that there is a
5µs window during each UV/OV comparison cycle where
an ADC measurement request may be missed. This is
an unlikely event. For example, the comparison cycle is
2 seconds when CDC = 7. Use the CLEAR command to
detect missing ADC commands.
Operating with Less than 12 Cells
If fewer than 12 cells are connected to the LTC6803, the
unused input channels must be masked. The MCxI bits in
the configuration registers are used to mask channels. In
addition, the LTC6803 can be configured to automatically
bypass the measurements of the top 2 cells, reducing power
consumption and measurement time. If the CELL10 bit is
high, the inputs for cell 11 and cell 12 are masked and only
the bottom 10-cell voltages will be measured. By default,
the CELL10 bit is low, enabling measurement of all 12-cell
voltages. Additional information regarding operation with
less than 12 cells is provided in the applications section.
ADC RANGE AND OUTPUT FORMAT
The ADC outputs a 12-bit code with an offset of 0x200
(512 decimal). The input voltage can be calculated as:
V
IN
= (DOUT – 512) • V
LSB
; V
LSB
= 1.5mV
where DOUT is a decimal integer.
For example, a 0V input will have an output reading of 0x200.
An ADC reading of 0x000 means the input was –0.768V. The
absolute ADC measurement range is –0.768V to 5.376V.
The resolution is V
LSB
= 1.5mV = (5.376 + 0.768)/2
12
. The
useful range is –0.3V to 5V. This range allows monitoring
supercapacitors which could have small negative voltage.
Inputs below –0.3V exceed the absolute maximum rating
of the C pins. If all inputs are negative, the ADC range is
reduced to –0.1V. Inputs above 5V will have noisy ADC
readings (see Typical Performance Characteristics).
ADC MEASUREMENTS DURING CELL BALANCING
The primary cell voltage ADC measurement commands
(STCVAD and STOWAD) automatically turn off a cell’s
discharge switch while its voltage is being measured. The
discharge switches for the cell above and the cell below will
also be turned off during the measurement. For example,
discharge switches S4, S5 and S6 will be off while cell 5
is being measured. The UV/OV comparison conversions in
CDC modes 2 through 7 also cause a momentary turn-off
of the discharge switch. For example, switches S4, S5 and
S6 will be off while cell 5 is checked for a UV/OV condition.
In some systems it may be desirable to allow discharging to
continue during cell voltage measurements. The cell voltage
ADC conversion commands STCVDC and STOWDC allow
the discharge switches to remain on during cell voltage
measurements. This feature allows the system to perform
a self test to verify the discharge functionality.

LTC6803HG-2#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Battery Management Battery Stack Monitor, Addressable SPI
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union